[HAOI 2007]上升序列
Description
对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax
2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给
出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先
x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.
Input
第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M
行每行一个数L,表示要询问长度为L的上升序列。N<=10000,M<=1000
Output
对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.
Sample Input
3 4 1 2 3 6
3
6
4
5
Sample Output
1 2 3 6
Impossible
题解
比较暴力...
首先做一般的 $lis$ 都可以获得一个数组,如 $f_i$ 表示 $i$ 这个位置以前以 $a_i$ 结尾的最长上升子序列的长度。
我们考虑反着做,记 $f_i$ 表示 $i$ 这个位置之后以 $a_i$ 开头的最长上升子序列的长度。
然后处理询问 $len$ 的时候只需要从 $1$ 到 $n$ 扫一遍,记 $last$ 为上一个选出的数, $x$ 为待选序列长度。如果 $a_i > last$ 且 $f_i \geq x$ ,便选上,将 $x-1$ 。
//It is made by Awson on 2018.1.4
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define LD long double
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = ;
const int INF = ~0u>>; int n, m, a[N+], f[N+], w[N+], x, maxlen; void print(int x) {
int last = ;
for (int i = ; i <= n; i++) {
if (f[i] >= x && last < a[i] && x) {
if (last != ) printf(" ");
last = a[i];
printf("%d", a[i]);
x--;
}
}
printf("\n");
}
int dev(int l, int r, int val) {
int ans = ;
while (l <= r) {
int mid = (l+r)>>;
if (w[mid] > val) l = mid+, ans = mid;
else r = mid-;
}
return ans;
}
void work() {
scanf("%d", &n); w[] = INF;
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
for (int i = n; i >= ; i--) {
int pos = dev(, maxlen, a[i]); maxlen = Max(maxlen, pos+);
f[i] = pos+;
if (f[i] == maxlen) w[maxlen] = a[i];
else w[f[i]] = Max(w[f[i]], a[i]);
}
scanf("%d", &m);
while (m--) {
scanf("%d", &x);
if (x > maxlen) printf("Impossible\n");
else print(x);
}
}
int main() {
work();
return ;
}
[HAOI 2007]上升序列的更多相关文章
- 【HAOI 2007】 上升序列
[题目链接] 点击打开链接 [算法] 先预处理 : 将序列反转,求最长下降子序列 对于每个询问,根据字典序性质,贪心即可 [代码] #include<bits/stdc++.h> usin ...
- [BZOJ 1053] [HAOI 2007] 反素数ant
题目链接:BZOJ 1053 想一想就会发现,题目让求的 1 到 n 中最大的反素数,其实就是 1 到 n 中因数个数最多的数.(当有多于一个的数的因数个数都为最大值时,取最小的一个) 考虑:对于一个 ...
- [HAOI 2007]反素数ant
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...
- [HAOI 2007]理想的正方形
Description 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. Input 第一行为3个整数,分别表示a,b,n的值第二行至第 ...
- 【HAOI 2007】 理想的正方形
[题目链接] 点击打开链接 [算法] 单调队列 [代码] #include<bits/stdc++.h> using namespace std; #define MAXN 1010 co ...
- bzoj 1053 [ HAOI 2007 ] 反素数ant ——暴搜
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 试图打表找规律,但无果... 看TJ了,暴搜: 注意参数 w 是 long long. ...
- [HNOI 2001]求正整数
Description 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m.例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. Input n ...
- [HNOI2001]求正整数
题目描述 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. 例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. 输入输出格式 输入格式: ...
- 【二分 贪心】覆盖问题 BZOJ1052 HAOI2007
覆盖问题 bzoj1052 题目来源:HAOI 2007 题目描述 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的 ...
随机推荐
- 四则运算程序(java基于控制台)
四则运算题目生成程序(基于控制台) 一.题目描述: 1. 使用 -n 参数控制生成题目的个数,例如 Myapp.exe -n 10 -o Exercise.txt 将生成10个题目. 2. 使用 -r ...
- 2018(上)C高级第0次作业
一:已关注邹欣老师的博客,以及一些任课老师的博客. 二:新学期新气象,走过基础C语言的学习,转眼间来到了C语言的高级学习... 1.翻阅邹欣老师博客关于师生关系博客,并回答下列问题. (1)最理想的师 ...
- Beta冲刺NO.7
Beta冲刺 第七天 昨天的困难 昨天的困难在一些多表查询上,不熟悉hibernate的套路,走了很多弯路. 第一次使用图表插件,在图表的显示问题上花了一定的时间. 对于页面绑定和后台数据自动填充的理 ...
- Beta冲刺Day7
项目进展 李明皇 今天解决的进度 部分数据传递和使用逻辑测试 林翔 今天解决的进度 服务器端查看个人发布的action,修改已发布消息状态的action,仍在尝试使用第三方云存储功能保存图片 孙敏铭 ...
- 解决background图片拉伸问题
ImageView中XML属性src和background的区别: background会根据ImageView组件给定的长宽进行拉伸,而src就存放的是原图的大小,不会进行拉伸.src是图片内容(前 ...
- [USACO4.1]麦香牛块Beef McNuggets
https://www.luogu.org/problemnew/show/P2737 给出n个数ai,求这n个数不能累加出的最大的数 最大的数无限大或能凑出所有的自然数则输出0 n<=10,a ...
- nyoj 疯牛
疯牛 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 农夫 John 建造了一座很长的畜栏,它包括N (2 <= N <= 100,000)个隔间,这些小 ...
- MongoDB 副本集管理
一.以单机模式启动成员节点 有时候出于维护的需要,需要以单机模式启动某个节点而不是一个副本集成员身份. 1).首先查询服务器命令行参数 db.serverCmdLineOpts() 2).关闭当前副本 ...
- zookeeper安装及环境变量设置
下载 首先去官网下载(自行选择版本):http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.4.11/然后执行tar -zxvf解压 对于后台安装 ...
- Docker学习笔记 - 创建私有的镜像仓库
一.查找镜像仓库 https://hub.docker.com/ 二.下载镜像仓库 docker pull registry:2.6.2 三.安装镜像仓库 docker run -d -p 6000: ...