题面

传送门

Sol

摆定理

\[a^b\equiv
\begin{cases}
a^{b\%\phi(p)}~~~~~~~~~~~gcd(a,p)=1\\
a^b~~~~~~~~~~~~~~~~~~gcd(a,p)\neq1,b<\phi(p)\\
a^{b\%\phi(p)+\phi(p)}~~~~gcd(a,p)\neq1,b\geq\phi(p)
\end{cases}~~~~~~~(mod~p)
\]

处理出\(p\)每次取\(\varphi\)取到\(1\)为止的\(\varphi\)值(注意还要取个1,可能存在其它的\(p\)的\(\varphi\)为1),最多\(log\)个

每次暴力修改,如果这个点被修改了超过了\(p取\varphi\)的次数它就不会变了,那就不改了

每个数只会最多改\(log\)次,所以复杂度对了

直接搞luogu和loj上TLE了

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(5e4 + 5), __(1e4 + 1); IL ll Read(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, m, c, prime[__], num, phi[30], lenp;
bool isprime[__]; IL void Sieve(){
isprime[1] = 1;
for(RG int i = 2; i < __; ++i){
if(!isprime[i]) prime[++num] = i;
for(RG int j = 1; j <= num && prime[j] * i < __; ++j){
isprime[i * prime[j]] = 1;
if(!(i % prime[j])) break;
}
}
} IL int Phi(RG int x){
RG int cnt = x;
for(RG int i = 1; i <= num && prime[i] * prime[i] <= x; ++i){
if(x % prime[i]) continue;
while(!(x % prime[i])) x /= prime[i];
cnt -= cnt / prime[i];
}
if(x > 1) cnt -= cnt / x;
return cnt;
} IL ll Pow(RG ll x, RG ll y, RG ll p){
RG int flg2 = 0, flg1 = 0; RG ll cnt = 1;
for(; y; y >>= 1){
if(y & 1) flg1 |= (cnt * x >= p || flg2), cnt = cnt * x % p;
flg2 |= (x * x >= p); x = x * x % p;
}
return cnt + flg1 * p;
} IL ll Calc(RG int l, RG int r, RG ll x, RG ll p){
if(l == r) return Pow(x, 1, p);
return Pow(c, Calc(l + 1, r, x, phi[l + 1]), p);
} int tim[_ << 2], sum[_ << 2], a[_]; IL void Build(RG int x, RG int l, RG int r){
if(l == r){ sum[x] = a[l] = Read(); return; }
RG int mid = (l + r) >> 1;
Build(x << 1, l, mid); Build(x << 1 | 1, mid + 1, r);
sum[x] = (sum[x << 1] + sum[x << 1 | 1]) % phi[0];
} IL void Modify(RG int x, RG int l, RG int r, RG int L, RG int R){
if(tim[x] >= lenp) return;
if(l == r){ ++tim[x]; sum[x] = Calc(0, tim[x], a[l], phi[0]) % phi[0]; return; }
RG int mid = (l + r) >> 1;
if(L <= mid) Modify(x << 1, l, mid, L, R);
if(R > mid) Modify(x << 1 | 1, mid + 1, r, L, R);
sum[x] = (sum[x << 1] + sum[x << 1 | 1]) % phi[0];
tim[x] = min(tim[x << 1], tim[x << 1 | 1]);
} IL int Query(RG int x, RG int l, RG int r, RG int L, RG int R){
if(L <= l && R >= r) return sum[x];
RG int mid = (l + r) >> 1, ans = 0;
if(L <= mid) ans = Query(x << 1, l, mid, L, R);
if(R > mid) ans = (ans + Query(x << 1 | 1, mid + 1, r, L, R)) % phi[0];
return ans;
} int main(RG int argc, RG char* argv[]){
Sieve(); n = Read(); m = Read(); RG int p = Read(); c = Read();
phi[0] = p; while(p != 1) p = phi[++lenp] = Phi(p); phi[++lenp] = 1;
Build(1, 1, n);
for(RG int i = 1; i <= m; ++i){
RG int op = Read(), l = Read(), r = Read();
if(!op) Modify(1, 1, n, l, r);
else printf("%d\n", Query(1, 1, n, l, r));
}
return 0;
}

也可以直接强行去掉快速幂的\(log\)

处理出两段\(c的幂,记为pow\),一段处理\(10000\)以内的,另一段处理以外的,查询时两端拼起来就好了

int Query(int x,int a,int mm)
{
if (a <= 10000) return pow1[a][mm];
return (1ll*pow2[a/10000][mm]*pow1[a%10000][mm])%phi[mm];
}

Bzoj4869: [Shoi2017]相逢是问候的更多相关文章

  1. BZOJ4869 [Shoi2017]相逢是问候 【扩展欧拉定理 + 线段树】

    题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varp ...

  2. bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)

    这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...

  3. BZOJ:4869: [Shoi2017]相逢是问候

    4869: [Shoi2017]相逢是问候 先说点正经的…… 显然做了有限次(我只知道是有限次,而且不会大,别人说是log次?)修改以后会达到不动点,即以后怎么修改都不变了. 然后就随便做了.(3个l ...

  4. bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]

    4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. ...

  5. 【BZOJ4869】相逢是问候(线段树,欧拉定理)

    [BZOJ4869]相逢是问候(线段树,欧拉定理) 题面 BZOJ 题解 根据欧拉定理递归计算(类似上帝与集合的正确用法) 所以我们可以用线段树维护区间最少的被更新的多少次 如果超过了\(\varph ...

  6. 【BZOJ4869】相逢是问候 [线段树][欧拉定理]

    相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Informatikverbin ...

  7. BZOJ4869:[SHOI2017]相逢是问候——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4869 题面复制于洛谷:https://www.luogu.org/problemnew/show/P ...

  8. 【bzoj4869】[Shoi2017]相逢是问候 线段树+扩展欧拉定理

    Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两 ...

  9. 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组

    题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...

随机推荐

  1. CSS单行、多行文本溢出显示省略号

    如果实现单行文本的溢出显示省略号小伙伴们应该都知道用text-overflow:ellipsis属性来,当然还需要加宽度width属来兼容部分浏览. 实现方法: overflow: hidden; t ...

  2. ci框架基础知识点

    一.路由 1.index.php/test/hello->控制器test的hello方法 2. 也可以手动配置路由   app/config/routes.php中     I:$route[' ...

  3. static关键字的使用总结

    1.对于static关键字的使用的时候对于修饰变量的时候,它相当于一个全局变量: 2.对于static修饰一个函数的时候他是在类被加载的时候首先会被类加载,并且只能加载一次,并且这个方法可以不需要通过 ...

  4. mac清除某个端口的占用

    lsof -i:8080查找某个应用的pid kill  pid就可以了

  5. 关于c++栈溢出的问题

    我自己定义了一个数据类型node,嵌套在另一个数据类型当中时候,用到了delete函数, 在我node的声明当中声明了几个指针 在我的析构函数中却调用了delet函数 结果程序结果是能跑出来 提示我栈 ...

  6. FIO性能测试

    FIO参数中,ioengine使用libaio,并发jobs数固定为1,通过iodepth来控制压力.分别测试随机读.随机写,作为读写的性能基准.不测试顺序读写,不测试混合读写. 1.测试IOPS峰值 ...

  7. 初识Vue——模板语法

    一.插值 1.文本 数据绑定最常见的形式是使用双大括号({{  }}--"Mustache"语法)的文本插值 <div class="mustache"& ...

  8. 理解OAuth2.0认证

    一.什么是OAuth协议 OAuth 协议为用户资源的授权提供了一个安全的.开放而又简易的标准.与以往的授权方式不同之处是 OAuth的授权不会使第三方触及到用户的帐号信息(如用户名与密码),即第三方 ...

  9. 用户态Linux内核

    User Mode Linux 是可以在用户态启动的 Linux版本,最新版linux内核已提供了支持.这使我们能在类似 OpenVZ 虚拟化技术的系统上,使用最新的 Linux 内核:并且可以在非 ...

  10. 借鉴mini2440的usb-wifi工具集在Beagleboard上移植无线网卡

    配置minicom: sudo yum install minicom sudo minicom -s 选择Serial port setup,此时所示光标在"Change which se ...