BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元

题意:

奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡。猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城。这些城市由M (1 <= M <= 44,850)条由两个不同端点A_j和B_j (1 <= A_j<= N; 1 <= B_j <= N)表示的双向道路连接。保证城市1至少连接一个其它的城市。一开始臭气弹会被放在城市1。每个小时(包括第一个小时),它有P/Q (1 <= P <=1,000,000; 1 <= Q <= 1,000,000)的概率污染它所在的城市。如果这个小时内它没有污染它所在的城市,那麽它随机地选择一条道路,在这个小时内沿着这条道路走到一个新的城市。可以离开这个城市的所有道路被选择的概率均等。因为这个臭气弹的随机的性质,奶牛们很困惑哪个城市最有可能被污染。给定一个猪猡文明的地图和臭气弹在每个小时内爆炸的概率。计算每个城市最终被污染的概率。如下例,假设这个猪猡文明有两个连接在一起的城市。臭气炸弹从城市1出发,每到一个城市,它都有1/2的概率爆炸。 1--2 可知下面这些路径是炸弹可能经过的路径(最后一个城市是臭气弹爆炸的城市): 1: 1 2: 1-2 3: 1-2-1 4: 1-2-1-2 5: 1-2-1-2-1 ... 要得到炸弹在城市1终止的概率,我们可以把上面的第1,第3,第5……条路径的概率加起来,(也就是上表奇数编号的路径)。上表中第k条路径的概率正好是(1/2)^k,也就是必须在前k-1个回合离开所在城市(每次的概率为1 - 1/2 = 1/2)并且留在最后一个城市(概率为1/2)。所以在城市1结束的概率可以表示为1/2 + (1/2)^3 + (1/2)^5 + ...。当我们无限地计算把这些项一个个加起来,我们最后会恰好得到2/3,也就是我们要求的概率,大约是0.666666667。这意味着最终停留在城市2的概率为1/3,大约为0.333333333。

分析:设f[i]为炸弹在i点爆炸的概率。它等于所有与它连边的点的概率乘上炸弹不移动的概率乘上到这个点的概率的和。但我们发现状态之间的转移有环,这个状态能推出的状态会影响到它本身。
我们可以把每个f[i]当成未知数,每个转移当成方程,那么求f的过程就变成了解方程。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define du long double
#define N 400
#define M 50050
int head[N],to[M<<1],nxt[M<<1],cnt;
int n,m,out[N];
du p;
du a[N][N];
inline void add(int u,int v){
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
}
du Abs(du x){
return x>0?x:-x;
}
void Guass(){
int i,j,k;
for(i=1;i<=n;i++){
int mx=i;
for(j=i+1;j<=n;j++){
if(Abs(a[j][i])>Abs(a[mx][i]))mx=j;
}
if(mx!=i){
for(j=i;j<=n+1;j++){
swap(a[i][j],a[mx][j]);
}
}
for(j=i+1;j<=n;j++){
du tmp=-a[j][i]/a[i][i];
a[j][i]=0;
for(k=i+1;k<=n+1;k++){
a[j][k]+=tmp*a[i][k];
}
}
}
for(i=n;i;i--){
for(j=i+1;j<=n;j++){
a[i][n+1]-=a[j][n+1]*a[i][j];
}
a[i][n+1]/=a[i][i];
}
for(i=1;i<=n;i++){
printf("%.9Lf\n",a[i][n+1]);
}
}
int main(){
int i,j,x,y;
scanf("%d%d%d%d",&n,&m,&x,&y);
p=1.0*x/y;
for(i=1;i<=m;i++){
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
out[x]++;out[y]++;
}
for(i=1;i<=n+1;i++){
a[1][i]=1;
}
for(i=2;i<=n;i++){
a[i][i]=1;
for(j=head[i];j;j=nxt[j]){
a[i][to[j]]=-(1-p)*1.0/out[to[j]];
}
}
/*for(i=1;i<=n;i++){
for(j=1;j<=n+1;j++){
printf("%.2lf ",a[i][j]);
}
puts("");
}*/
Guass();
}

BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元的更多相关文章

  1. bzoj1778: [Usaco2010 Hol]Dotp 驱逐猪猡(概率DP+高斯消元)

    深夜肝题...有害身心健康QAQ 设f[i]为到达i的概率,d[i]为i的度数. 因为无限久之后炸弹爆炸的概率是1,所以最后在i点爆炸的概率实际上就是f[i]/sigma(f[]) 列出方程组 f[i ...

  2. BZOJ_1778_[Usaco2010_Hol]_Dotp_驱逐猪猡_(期望动态规划+高斯消元+矩阵)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1778 炸弹从1出发,有\(\frac{P}{Q}\)的概率爆炸,如果不爆炸,等概率移动到连通的 ...

  3. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]

    1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...

  4. 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元

    题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...

  5. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡

    1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 563  Solved: 216[Submi ...

  6. 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡 期望DP+高斯消元

    [BZOJ1778][Usaco2010 Hol]Dotp 驱逐猪猡 Description 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300 ...

  7. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  8. LightOJ - 1151概率dp+高斯消元

    概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到 ...

  9. BZOJ3270 博物館 概率DP 高斯消元

    BZOJ3270 博物館 概率DP 高斯消元 @(XSY)[概率DP, 高斯消元] Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博 ...

随机推荐

  1. plsql developer 使用 oracle instantclient的安装和配置

    本文由ibyedo1贡献 1.下载 oracle instantclient basic package,在 oracle 官网下载就可以,地址如下: http://www.oracle.com/te ...

  2. Fast Paxos

    http://blog.csdn.net/chen77716/article/details/7297122 自从Lamport在1998年发表Paxos算法后,对Paxos的各种改进工作就从未停止, ...

  3. openresty + lua-resty-weedfs + weedfs + graphicsmagick动态生成缩略图(类似淘宝方案)

    openresty + lua-resty-weedfs + weedfs + graphicsmagick动态生成缩略图(类似淘宝方案) --大部分的网站都要涉及到图片缩略图的处理,比如新闻配图,电 ...

  4. Android Studio 插件开发详解二:工具类

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/78112856 本文出自[赵彦军的博客] 在插件开发过程中,我们按照开发一个正式的项 ...

  5. self,和类实例化加不加括号的理解

    # class Dog(object): # def talk(self): # print('汪汪~~~') # print(self) # self就是对象,默认将对象传递到类方法,self不需要 ...

  6. java.IO层次体系结构

    在整个Java.io包中最重要的就是5个类和一个接口.5个类指的是File.OutputStream.InputStream.Writer.Reader:一个接口指的是Serializable.掌握了 ...

  7. httpClient连接超时设置

    注: 每个HttpClinet对象设置都不一样 这里已3.x和4.x为例说明 1)3.X版本 创建连接 HttpClient httpClient=new DefaultHttpClient(); 这 ...

  8. 基于Kafka Connect框架DataPipeline在实时数据集成上做了哪些提升?

    在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeli ...

  9. java并发之ReentrantLock学习理解

    简介 java多线程中可以使用synchronized关键字来实现线程间同步互斥,但在jdk1.5中新增加了ReentrantLock类也能实现同样的效果,并且在扩展功能上也更加强大,比如具有嗅探锁定 ...

  10. Tiny4412之外部中断

    一:外部中断 在之前我们学习按键驱动的时候,我们检测按键有没有按下是通过轮循的方式(也就是我们说的死循环),这样虽然可以检测实现按键,但太浪费系统资源了,不论我们按键中断有没有发生,cpu都要一直进行 ...