BZOJ 2287. [HZOI 2015]疯狂的机器人 [FFT 组合计数]
2287. [HZOI 2015]疯狂的机器人
题意:从原点出发,走n次,每次上下左右不动,只能在第一象限,最后回到原点方案数
这不煞笔提,组合数写出来发现卷积NTT,然后没考虑第一象限gg
其实就是卡特兰数
只不过这里\(C(i)\)是第\(\frac{i}{2}\)项,奇数为0
令\(f[n]\)为走n次回到原点方案数,$$
f[n]=\sum_{i=0}{n}C(i)C(n-i)\binom{n}{i}=n!\sum_{i=0}{n}C(i)\frac{1}{i!}C(n-i)\frac{1}{(n-i)!}
注意阶乘和阶乘逆元别乘错了,别丢东西!!!
```cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=(1<<18)+5, INF=1e9;
const ll P=998244353;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
ll Pow(ll a, ll b, ll P) {
ll ans=1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}
namespace NTT{
int n, rev[N], g;
void ini(int lim) {
g=3;
n=1; int k=0;
while(n<lim) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
}
void dft(ll *a, int flag) {
for(int i=0; i<n; i++) if(i<rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m=l>>1;
ll wn=Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l, P);
for(ll *p=a; p!=a+n; p+=l) {
ll w=1;
for(int k=0; k<m; k++) {
ll t = w*p[k+m]%P;
p[k+m] = (p[k] - t + P)%P;
p[k] = (p[k] + t)%P;
w = w*wn%P;
}
}
}
if(flag==-1) {
ll inv=Pow(n, P-2, P);
for(int i=0; i<n; i++) a[i] = a[i]*inv%P;
}
}
void mul(ll *a, ll *b) {
dft(a, 1);
for(int i=0; i<n; i++) a[i]=a[i]*a[i]%P;
dft(a, -1);
}
}using NTT::dft; using NTT::ini; using NTT::mul;
int n;
ll inv[N], fac[N], facInv[N];
ll a[N], b[N];
ll C(int n, int m) {return fac[n]*facInv[m]%P*facInv[n-m]%P;}
int main() {
//freopen("in","r",stdin);
freopen("crazy_robot.in","r",stdin);
freopen("crazy_robot.out","w",stdout);
n=read(); ini(n+n+1);
inv[1]=1; fac[0]=facInv[0]=1;
for(int i=1; i<=n; i++) {
if(i!=1) inv[i] = (P-P/i)*inv[P%i]%P;
fac[i] = fac[i-1]*i%P;
facInv[i] = facInv[i-1]*inv[i]%P;
}
a[0]=b[0]=1;
for(int i=2; i<=n; i+=2) a[i]=b[i]= C(i, i>>1) * inv[(i>>1)+1] %P * facInv[i] %P;
mul(a, b);
for(int i=0; i<=n; i++) a[i]=a[i]*fac[i]%P;
ll ans=0;
for(int m=0; m<=n; m+=2) (ans += C(n, m) * a[m]%P) %=P;
printf("%lld\n", ans);
}
```\]
BZOJ 2287. [HZOI 2015]疯狂的机器人 [FFT 组合计数]的更多相关文章
- 【COGS】2287:[HZOI 2015]疯狂的机器人 FFT+卡特兰数+排列组合
[题意][COGS 2287][HZOI 2015]疯狂的机器人 [算法]FFT+卡特兰数+排列组合 [题解]先考虑一维的情况,支持+1和-1,前缀和不能为负数,就是卡特兰数的形式. 设C(n)表示第 ...
- [COGS 2287][HZOI 2015]疯狂的机器人
Description 题库链接 现在在二维平面内原点上有一只机器人,他每次可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格).机器人不能走到横坐标是负数或者纵坐标是负数的点上. 给 ...
- [HZOI 2015]疯狂的机器人
[题目描述] 现在在二维平面内原点上有一只机器人 他每次操作可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格) 但是由于本蒟蒻施展的大魔法,机器人不能走到横坐标是负数或者纵坐标是负数 ...
- COGS2287 [HZOI 2015]疯狂的机器人
[题目描述] 现在在二维平面内原点上有一只机器人 他每次操作可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格) 但是由于本蒟蒻施展的大魔法,机器人不能走到横坐标是负数或者纵坐标是负数 ...
- HDU4609 FFT+组合计数
HDU4609 FFT+组合计数 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 找出n根木棍中取出三根木棍可以组成三角形的概率 题解: ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ 3027】 3027: [Ceoi2004]Sweet (容斥原理+组合计数)
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 71 Solved: 34 Description John ...
- cojs 疯狂的重心 疯狂的机器人 题解报告
疯狂的重心 话说做过幻想乡战略游戏的人应该很容易切掉这道题目吧 我们考虑一棵树如果添加了一个叶子,那么其重心最多向叶子方向移动1的距离 而是否移动我们只需要记录子树中有多少个点就可以判断啦 也就是说这 ...
随机推荐
- Java的语言特点详解
1)简单性:java从C++简化而来,设计者们把C++语言中许多可用的特征去掉了,这些特征是一般程序员很少使用的.java还剔除了C++操作符过载和指针操作. 2)面向对象:java是一个面向对象的语 ...
- 个人Vue-1.0学习笔记
dVue.js是类似于angular.js的一套构建用户界面的渐进式框架,只关注视图层, 采用自底向上增量开发的设计. Vue.js的代码需要放置在指定的HTML元素后面. 关于Vue的数据绑定: 例 ...
- DEDE中如何过滤掉Html标签,并且截取字符串长度
在dede标签中只要使用2个函数就可以. [field:body function="cn_substr(Html2text(@me),80)"/] Html2text()函数是去 ...
- ios 积累
1.加号 是可以通过类名直接调用这个方法,而减号则要实例化逸个对象,然后通过实例化的对象来调用该方法!! 2.(返回类型) 方法名 :(参数类型)变量名 空格 参数二名 :(参数类型) 变量名 空格 ...
- Java数据持久层框架 MyBatis之API学习六(Mapper XML 文件详解)
对于MyBatis的学习而言,最好去MyBatis的官方文档:http://www.mybatis.org/mybatis-3/zh/index.html 对于语言的学习而言,马上上手去编程,多多练习 ...
- io调度策略noop的理解
io电梯算法,网上一堆,在此不再赘述. 手上有几块厂商提供的sas的ssd,做如下实验. 考虑到没有磁头移动,ssd一般采用noop的io调度策略,结果看到如下的iostat测试数据: Device: ...
- 互联网公司为啥不使用mysql分区表?
转:http://www.cnblogs.com/zhulin516114/p/7306708.html 缘起:有个朋友问我分区表在58的应用,我回答不出来,在我印象中,百度.58都没有听说有分区表相 ...
- AI_神经网络监督学习
神经网络的神奇之处在哪? 所有神经网络创造出来的价值,都是由一种机器学习,称之为监督学习, 下面这些例子神经网络效果拔群,通过深度学习获利最多的是在线广告 技术的进步来源于计算机视觉和深度学习 例如: ...
- js_6_dom选择
什么是dom编程? 找 找到html中的标签,赋值给一个变量 改 通过更改这个变量动态地更改html中的内容 返回的内容为列表 如何找到那些标签? id:var find = document.get ...
- Log4j扩展使用--输出地Appender
OK,现在我们来研究输出低Appended. Appender控制日志输出的位置 Log4j日志系统允许把日志输出到不同的地方,如控制台(Console).文件(Files).根据天数或者文件大小产生 ...