传送门


题意:求$n$个数组成的排列变为升序有多少种不同的步数


步数就是循环长度的$lcm$.....

那么就是求$n$划分成一些数几种不同的$lcm$咯

然后我太弱了这种$DP$都想不出来....

通过枚举每个质因子的指数来求$lcm$

$d[i][j]$表示前$i$个质因子当前和为$j$的方案数

转移枚举质因子的指数

但这样我们忽略了可以划分出$1$,所以统计答案时枚举$j$

或者我们直接初始化$d[0][i]=1$

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n;
int p[N];
bool notp[N];
void sieve(int n){
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i;
for(int j=;j<=p[]&&i*p[j]<=n;j++){
notp[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
ll f[N][N];
void dp(){
f[][]=;
for(int i=;i<=p[];i++)
for(int j=;j<=n;j++){
f[i][j]=f[i-][j];
for(int k=p[i];k<=j;k*=p[i])
f[i][j]+=f[i-][j-k];
}
ll ans=;
for(int i=;i<=n;i++) ans+=f[p[]][i];
printf("%lld",ans);
}
int main(){
freopen("in","r",stdin);
n=read();
sieve(n);
dp();
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n;
int p[N];
bool notp[N];
void sieve(int n){
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i;
for(int j=;j<=p[]&&i*p[j]<=n;j++){
notp[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
ll f[N][N];
void dp(){
f[][]=;
for(int i=;i<=n;i++) f[][i]=;
for(int i=;i<=p[];i++)
for(int j=;j<=n;j++){
f[i][j]=f[i-][j];
for(int k=p[i];k<=j;k*=p[i])
f[i][j]+=f[i-][j-k];
}
printf("%lld",f[p[]][n]);
}
int main(){
freopen("in","r",stdin);
n=read();
sieve(n);
dp();
}

BZOJ 1025: [SCOI2009]游戏 [置换群 DP]的更多相关文章

  1. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  2. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  3. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  4. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  5. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  6. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  7. bzoj 1025: [SCOI2009]游戏【数学+dp】

    很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数 有结论若p1^a1+p2^a2+...+pm^am<=n,则ans=p1^a1p2^a2..*pm^am是n的一个可行答案.( ...

  8. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  9. 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...

随机推荐

  1. CentOS 6.5 编译安装 LNMP环境

    建立一个软件包目录存放 mkdir -p /usr/local/src/ 清理已经安装包 rpm -e httpd rpm -e mysql rpm -e php yum -y remove http ...

  2. SPRING BOOT跨域访问处理

    尊重原创:http://blog.csdn.net/ruiguang21/article/details/77878933 问题场景:由于项目中使用到跨域访问,今天也得到高人指点,所以写出来分享给大家 ...

  3. 坑爹的file_exists

       介绍   我发现了一个问题,今天与大家分享.我把整个过程描述一下.   问题   公司有个框架是基于smarty写的,我负责php的升级,维护人员把新环境布上来之后,测试人员找我提出经常报错(错 ...

  4. 如何从Android工程导出apk安装包

    http://jingyan.baidu.com/article/1876c852b3208b890b137606.html

  5. Codeforces 899 F. Letters Removing (二分、树状数组)

    题目链接:Letters Removing 题意: 给你一个长度为n的字符串,给出m次操作.每次操作给出一个l,r和一个字符c,要求删除字符串l到r之间所有的c. 题解: 看样例可以看出,这题最大的难 ...

  6. VMware虚拟机上建立HTTP服务步骤

    1.使用xshell连接虚拟机,也可直接在虚拟机中敲命令. 以下是xshell上的命令: 首先安装HTTPD包 [root@one ~]# mount /dev/sr0 /mnt[root@one ~ ...

  7. 【Java框架型项目从入门到装逼】第十四节 查询用户列表展现到页面

    这一节,我们来实现一下用户列表搜索,最终的效果如下: 这边我们要使用easyUI给我们提供的datagrid组件. HTML结构如下 <!-- 数据列表 --> <table id= ...

  8. Linux安装ffmpeg

      1.安装ffmpeg 简单步骤: A.首先去官网下载源码包,我的是ffmpeg-3.4.tar.bz2,下载之后上传至Linux准备安装,首先解压安装包: tar -xjvf ffmpeg-3.4 ...

  9. 编译原理:基于状态转换图识别for语句

    int state =0;while(state<9){ switch state{ case 0: if(ch=='f'){ state=1;getchar(ch); } case 1: if ...

  10. SpringMVC数据验证(AOP处理Errors和方法验证)

    什么是JSR303? JSR 303 – Bean Validation 是一个数据验证的规范,2009 年 11 月确定最终方案. Hibernate Validator 是 Bean Valida ...