1492: [NOI2007]货币兑换Cash

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 5541  Solved: 2228
[Submit][Status][Discuss]

Description

小Y最近在一家金券交易所工作。该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下
简称B券)。每个持有金券的顾客都有一个自己的帐户。金券的数目可以是一个实数。每天随着市场的起伏波动,
两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目。我们记录第 K 天中 A券 和 B券 的
价值分别为 AK 和 BK(元/单位金券)。为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法
。比例交易法分为两个方面:(a)卖出金券:顾客提供一个 [0,100] 内的实数 OP 作为卖出比例,其意义为:将
 OP% 的 A券和 OP% 的 B券 以当时的价值兑换为人民币;(b)买入金券:顾客支付 IP 元人民币,交易所将会兑
换给用户总价值为 IP 的金券,并且,满足提供给顾客的A券和B券的比例在第 K 天恰好为 RateK;例如,假定接
下来 3 天内的 Ak、Bk、RateK 的变化分别为:
假定在第一天时,用户手中有 100元 人民币但是没有任何金券。用户可以执行以下的操作:
注意到,同一天内可以进行多次操作。小Y是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经
知道了未来N天内的A券和B券的价值以及Rate。他还希望能够计算出来,如果开始时拥有S元钱,那么N天后最多能
够获得多少元钱。

Input

输入第一行两个正整数N、S,分别表示小Y能预知的天数以及初始时拥有的钱数。接下来N行,第K行三个实数AK、B
K、RateK,意义如题目中所述。对于100%的测试数据,满足:0<AK≤10;0<BK≤10;0<RateK≤100;MaxProfit≤1
0^9。
【提示】
1.输入文件可能很大,请采用快速的读入方式。
2.必然存在一种最优的买卖方案满足:
每次买进操作使用完所有的人民币;
每次卖出操作卖出所有的金券。
 

Output

只有一个实数MaxProfit,表示第N天的操作结束时能够获得的最大的金钱数目。答案保留3位小数。

Sample Input

3 100
1 1 1
1 2 2
2 2 3

Sample Output

225.000

HINT

Source

解题的第一个关键是知道每次操作都要完全,即买入就花光所有钱,卖出就卖出所有金券

容易列出暴力方程
f[i]=f[j]/(a[j]*r[j]+b[j])*r[j]*a[i]+f[j]/(a[j]*r[j]+b[j])*b[i]
设x[i]=f[j]/(a[j]*r[j]+b[j])*r[j]
y[i]=f[j]/(a[j]*r[j]+b[j])
f[i]=x[j]*a[i]+y[j]*b[i] 很明显可以斜率优化的式子
假设j比k优 且假设(x[k]<x[j])
那么x[j]*a[i]+y[j]*b[i]>x[k]*a[i]+y[k]*b[i]
=> -a[i]/b[i]<(y[k]-y[j])/(x[k]-x[j]) 维护上凸包

但是

由于-a[i]/b[i]不具有单调性 所以不能够用单调队列维护
由于x[i]不具有单调性 不能用单调队列维护

那么现在只要我们保证了x[i] 和-a[i]/b[i]的单调性,不就可以单调队列维护了?

可以用排序来保证-a[i]/b[i]单调 cdq分治保证x[i]单调且保证在i之前的j都已经转移完毕

 #include<bits/stdc++.h>
#define N 100005
using namespace std;
int n,s[N];double f[N];
const double eps=1e-;
const double inf=1e9;
struct query{double a,b,r,k;int id;}q[N],a[N];
struct point{
double x,y;
bool operator < (const point &b)const{
return fabs(x-b.x)<=eps?y<b.y:x<b.x;
}
}p[N],b[N];
double get(int i,int j){
if(fabs(p[i].x-p[j].x)<=eps)return -inf;
return (p[i].y-p[j].y)/(p[i].x-p[j].x);
}
void cdq(int l,int r){
if(l==r){
f[l]=max(f[l],f[l-]);
p[l].y=f[l]/(q[l].a*q[l].r+q[l].b);
p[l].x=p[l].y*q[l].r;return;
}
int mid=l+r>>;
int p1=l,p2=mid+;
for(int i=l;i<=r;i++){
if(q[i].id<=mid)a[p1++]=q[i];
else a[p2++]=q[i];
}
for(int i=l;i<=r;i++)q[i]=a[i];
cdq(l,mid);int tp=;
for(int i=l;i<=mid;i++){
while(tp>&&get(s[tp-],s[tp])<get(s[tp],i))tp--;
s[++tp]=i;
}
int j=;
for(int i=r;i>=mid+;i--){
while(j<tp&&q[i].k<get(s[j],s[j+])+eps)j++;
f[q[i].id]=max(f[q[i].id],p[s[j]].x*q[i].a+p[s[j]].y*q[i].b);
}
cdq(mid+,r);
p1=l,p2=mid+;
for(int i=l;i<=r;i++){
if((p[p1]<p[p2]||p2>r)&&p1<=mid)b[i]=p[p1++];
else b[i]=p[p2++];
}
for(int i=l;i<=r;i++)p[i]=b[i];
} bool cmp(query a,query b){return a.k<b.k;}
int main(){
scanf("%d%lf",&n,&f[]);
for(int i=;i<=n;i++){
scanf("%lf%lf%lf",&q[i].a,&q[i].b,&q[i].r);
q[i].k=-q[i].a/q[i].b;
q[i].id=i;
}
sort(q+,q++n,cmp);
cdq(,n);
printf("%.3lf\n",f[n]);
return ;
}

bzoj1492[NOI2007]货币兑换Cash cdq分治+斜率优化dp的更多相关文章

  1. [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化)

    [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化) 题面 分析 dp方程推导 显然,必然存在一种最优的买卖方案满足:每次买进操作使用完所有的人民币:每次卖出操作卖出所有 ...

  2. BZOJ 1492: [NOI2007]货币兑换Cash [CDQ分治 斜率优化DP]

    传送门 题意:不想写... 扔链接就跑 好吧我回来了 首先发现每次兑换一定是全部兑换,因为你兑换说明有利可图,是为了后面的某一天两种卷的汇率差别明显而兑换 那么一定拿全利啊,一定比多天的组合好 $f[ ...

  3. BZOJ1492:[NOI2007]货币兑换 (CDQ分治+斜率优化DP | splay动态维护凸包)

    BZOJ1492:[NOI2007]货币兑换 题目传送门 [问题描述] 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和B纪念券(以下简称B券).每个持有金券的 ...

  4. bzoj 1492: [NOI2007]货币兑换Cash【贪心+斜率优化dp+cdq】

    参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到 ...

  5. BZOJ1492: [NOI2007]货币兑换Cash(CDQ分治,斜率优化动态规划)

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

  6. 【uoj#244】[UER #7]短路 CDQ分治+斜率优化dp

    题目描述 给出 $(2n+1)\times (2n+1)$ 个点,点 $(i,j)$ 的权值为 $a[max(|i-n-1|,|j-n-1|)]$ ,找一条从 $(1,1)$ 走到 $(2n+1,2n ...

  7. BZOJ 1492 [NOI2007]货币兑换Cash (CDQ分治/splay 维护凸包)

    题目大意:太长了略 splay调了两天一直WA弃疗了 首先,我们可以猜一个贪心,如果买/卖,就一定都买/卖掉,否则不买/卖 反正货币的行情都是已知的,没有任何风险,所以肯定要选择最最最优的方案了 容易 ...

  8. bzoj3672/luogu2305 购票 (运用点分治思想的树上cdq分治+斜率优化dp)

    我们都做过一道题(?)货币兑换,是用cdq分治来解决不单调的斜率优化 现在它放到了树上.. 总之先写下来dp方程,$f[i]=min\{f[j]+(dis[i]-dis[j])*p[i]+q[i]\} ...

  9. BZOJ 3963: [WF2011]MachineWorks [CDQ分治 斜率优化DP]

    传送门 当然了WF的题uva hdu上也有 你的公司获得了一个厂房N天的使用权和一笔启动资金,你打算在这N天里租借机器进行生产来获得收益.可以租借的机器有M台.每台机器有四个参数D,P,R,G.你可以 ...

随机推荐

  1. 201421123042 《Java程序设计》第8周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码: 答:查找 ...

  2. CentOS7安装配置iptables防火墙

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/50779761 CentOS7默认的防火墙不是iptables,而是firewall ...

  3. 搭建java环境——使用Sublime Text 3(windows环境)

    实现sublime Text 3对Java编译执行 参考网址:http://tieba.baidu.com/p/2609515186 1.1直接在安装路径下找到*\Packages\Java.subl ...

  4. jQuery 写的textarea输入字数限制

    //先判断浏览器是不是万恶的IE        var bind_name = 'input';//默认事件        if (navigator.userAgent.indexOf(" ...

  5. PHP环境手动搭建wamp-----Apache+MySQL+PHP

    首先下载分别下载Apache+MySQL+PHP. 然后分别解压到文件夹中. 1.安装Apache 1)检查80端口是否占用 说明:apache软件占用80软件,在计算机中一个端口只能被一个软件占用 ...

  6. 不允许用(a+b)/2这种方式求两个数的均值;如下程序在Linux和32位集成开发环境中运行

    #define MAX(a,b) ((a)>(b)?(a):(b)) #include<stdio.h> int main() { int a = 10; int b = 20; i ...

  7. Excel+DDT数据驱动实例

    一.首先安装dtt模块 数据驱动原理 1.测试数据为多个字典的list类型 2.测试类前加修饰@ddt.ddt 3.case前加修饰@ddt.data() 4.运行后用例会自动加载成N个单独的用例 二 ...

  8. 【漏洞复现】PHPCMS wap模块 SQL注入(附EXP)

    漏洞影响版本:v9.5.8.v9.6.0 Step1: 访问:http://www.xxx.com/index.php?m=wap&a=index&siteid=1, 获取返回的coo ...

  9. istio入门(00)istio的学习资源

    官网:https://istio.io/ 理论知识: http://www.uml.org.cn/wfw/201710131.asp 环境搭建: http://dockone.io/article/2 ...

  10. 新概念英语(1-123)A trip to Australia

    Who is the man with the beard?(胡须)A:Look, Scott. This is a photograph I took during my trip to Austr ...