Intervals

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5488    Accepted Submission(s): 1999

Problem Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.

Write a program that:

> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,

> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,

> writes the answer to the standard output

 
Input
The first line of the input contains an integer n (1 <= n <= 50 000) - the number of intervals. The following n lines describe the intervals. The i+1-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and 1 <= ci <= bi - ai + 1.

Process to the end of file.

 
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i = 1, 2, ..., n.
 
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
 
Sample Output
6
 
Author
1384
 
Recommend
Eddy
 
倒没想到隐含条件
做含有不等式关系的题时要想到差分约束
设sum(a) 为小于等于a的在集合中的元素
根据
如果需要求的是两个变量差的最大值,那么需要将所有不等式转变成"<="的形式,建图后求最短路;相反,如果需要求的是两个变量差的最小值,那么需要将所有不等式转化成">=",建图后求最长路
建图
注意隐含条件
sum(i) - sum(i - 1) >= 0
sum(i) - sum(i - 1) <= 1
 
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int head[maxn], nex[maxn << ], d[maxn], vis[maxn];
int cnt, n, ans[maxn];
struct node
{
int u, v, w;
}Node[maxn << ]; void add(int u, int v, int w)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
nex[cnt] = head[u];
head[u] = cnt++;
} bool spfa(int s)
{
mem(d, -0x3f);
queue<int> Q;
Q.push(s);
vis[s] = ;
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i = head[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(d[v] < d[u] + Node[i].w)
{
d[v] = d[u] + Node[i].w;
if(!vis[v])
{
Q.push(v);
vis[v] = ;
if(++ans[v] > n) return ;
}
}
}
}
return ;
} int main()
{ while(~scanf("%d", &n))
{
mem(head, -);
mem(vis, );
mem(ans, );
cnt = ;
int u, v, w;
int mx = -INF, mi = INF;
for(int i = ; i <= n; i++)
{
rd(u), rd(v), rd(w);
u++, v++;
mx = max(mx, v);
mi = min(mi, u);
add(u - , v, w);
}
for(int i = mi; i <= mx; i++)
{
// add(mi, i, 0);
add(i - , i, );
add(i, i - , -);
} spfa(mi - ); pd(d[mx]); } return ;
}

World Exhibition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2440    Accepted Submission(s): 1171

Problem Description
Nowadays, many people want to go to Shanghai to visit the World Exhibition. So there are always a lot of people who are standing along a straight line waiting for entering. Assume that there are N (2 <= N <= 1,000) people numbered 1..N who are standing in the same order as they are numbered. It is possible that two or more person line up at exactly the same location in the condition that those visit it in a group.

There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.

 
Input
First line: An integer T represents the case of test.

The next line: Three space-separated integers: N, X, and Y.

The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.

The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.

 
Output
For each line: A single integer. If no line-up is possible, output -1. If person 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between person 1 and N.
 
Sample Input
1
4 2 1
1 3 8
2 4 15
2 3 4
 
Sample Output
19
 
Author
alpc20
 
Source
 
Recommend
zhouzeyong
 
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int head[maxn], ans[maxn], vis[maxn];
int n, m, cnt, s;
int d[maxn]; struct node
{
int v, next;
int w;
}Node[maxn*]; void add(int u, int v, int w)
{
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].next = head[u];
head[u] = cnt++;
} int spfa()
{
// mem(vis, 0);
for(int i = ; i < maxn; i++) d[i] = INF;
queue<int> Q;
mem(ans, );
Q.push(s);
vis[s] = ;
d[s] = ;
// mem(vis, 0);
// for(int i=1; i<=n; i++)
// {
// Q.push(i);
// d[i] = INF;
// vis[i] = 1;
// }
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i=head[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(d[e.v] > d[u] + e.w)
{
d[e.v] = d[u] + e.w;
if(!vis[e.v])
{
Q.push(e.v);
vis[e.v] = ;
if(++ans[e.v] > n) return ;
}
}
}
}
return ;
} void init()
{
mem(head, -);
cnt = ;
} bool check(int x)
{
bool flag = ;
for(int i = ; i < cnt; i++)
Node[i].w -= x;
if(spfa())
flag = ;
for(int i = ; i < cnt; i++)
Node[i].w += x;
return flag;
} int main()
{
int x;
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &x);
init();
int u, v, w, l = , r = ;
s = ;
rap(i, , m)
{
scanf("%d%d%d", &u, &v, &w);
if(u > v) swap(u, v);
add(u, v, w);
}
rap(i, , x)
{
scanf("%d%d%d", &u, &v, &w);
if(u > v) swap(u, v);
add(v, u, -w);
}
if(spfa()) printf("-1\n");
else if(d[n] == INF)
printf("-2\n");
else
printf("%d\n", d[n]); } return ;
}

King

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2348    Accepted Submission(s): 1052

Problem Description
Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen prayed: ``If my child was a son and if only he was a sound king.'' After nine months her child was born, and indeed, she gave birth to a nice son. 
Unfortunately, as it used to happen in royal families, the son was a little retarded. After many years of study he was able just to add integer numbers and to compare whether the result is greater or less than a given integer number. In addition, the numbers had to be written in a sequence and he was able to sum just continuous subsequences of the sequence.

The old king was very unhappy of his son. But he was ready to make everything to enable his son to govern the kingdom after his death. With regards to his son's skills he decided that every problem the king had to decide about had to be presented in a form of a finite sequence of integer numbers and the decision about it would be done by stating an integer constraint (i.e. an upper or lower limit) for the sum of that sequence. In this way there was at least some hope that his son would be able to make some decisions.

After the old king died, the young king began to reign. But very soon, a lot of people became very unsatisfied with his decisions and decided to dethrone him. They tried to do it by proving that his decisions were wrong.

Therefore some conspirators presented to the young king a set of problems that he had to decide about. The set of problems was in the form of subsequences Si = {aSi, aSi+1, ..., aSi+ni} of a sequence S = {a1, a2, ..., an}. The king thought a minute and then decided, i.e. he set for the sum aSi + aSi+1 + ... + aSi+ni of each subsequence Si an integer constraint ki (i.e. aSi + aSi+1 + ... + aSi+ni < ki or aSi + aSi+1 + ... + aSi+ni > ki resp.) and declared these constraints as his decisions.

After a while he realized that some of his decisions were wrong. He could not revoke the declared constraints but trying to save himself he decided to fake the sequence that he was given. He ordered to his advisors to find such a sequence S that would satisfy the constraints he set. Help the advisors of the king and write a program that decides whether such a sequence exists or not.

 
Input
The input consists of blocks of lines. Each block except the last corresponds to one set of problems and king's decisions about them. In the first line of the block there are integers n, and m where 0 < n <= 100 is length of the sequence S and 0 < m <= 100 is the number of subsequences Si. Next m lines contain particular decisions coded in the form of quadruples si, ni, oi, ki, where oi represents operator > (coded as gt) or operator < (coded as lt) respectively. The symbols si, ni and ki have the meaning described above. The last block consists of just one line containing 0.
 
Output
The output contains the lines corresponding to the blocks in the input. A line contains text successful conspiracy when such a sequence does not exist. Otherwise it contains text lamentable kingdom. There is no line in the output corresponding to the last ``null'' block of the input.
 
Sample Input
4 2
1 2 gt 0
2 2 lt 2
1 2
1 0 gt 0
1 0 lt 0
0
 
Sample Output
lamentable kingdom
successful conspiracy
 
Source
 
Recommend
LL
 
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int head[maxn], ans[maxn], vis[maxn];
int n, m, cnt, s;
int d[maxn]; struct node
{
int v, next;
int w;
}Node[maxn*]; void add(int u, int v, int w)
{
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].next = head[u];
head[u] = cnt++;
} int spfa()
{
mem(vis, );
mem(d, 0x3f);
queue<int> Q;
mem(ans, ); for(int i=; i<=n; i++)
{
Q.push(i);
d[i] = ;
vis[i] = ;
}
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i=head[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(d[e.v] > d[u] + e.w)
{
d[e.v] = d[u] + e.w;
if(!vis[e.v])
{
Q.push(e.v);
vis[e.v] = ;
if(++ans[e.v] > n) return ;
}
}
}
}
return ;
} void init()
{
mem(head, -);
cnt = ;
} bool check(int x)
{
bool flag = ;
for(int i = ; i < cnt; i++)
Node[i].w -= x;
if(spfa())
flag = ;
for(int i = ; i < cnt; i++)
Node[i].w += x;
return flag;
} int main()
{
int x;
while(scanf("%d", &n) && n)
{
scanf("%d", &m);
init();
int u, v, w, l = , r = ;
s = n + ;
char str[];
rap(i, , m)
{
scanf("%d%d%s%d", &u, &v, str, &w);
if(str[] == 'g')
add(u - , u + v, - - w);
else
add(u + v, u - , w - );
} bool flag = spfa();
if(flag)
cout << "successful conspiracy" << endl;
else
cout << "lamentable kingdom" << endl; } return ;
}

THE MATRIX PROBLEM

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9774    Accepted Submission(s): 2508

Problem Description
You have been given a matrix CN*M, each element E of CN*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.
 
Input
There are several test cases. You should process to the end of file.
Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.

 
Output
If there is a solution print "YES", else print "NO".
 
Sample Input
3 3 1 6
2 3 4
8 2 6
5 2 9
 
Sample Output
YES
 
Source
 
Recommend
lcy

可以得出要求是 L <= num[i][j] * a[i] / b[j] <= U

可以转换一下变成

log(L / num[i][j]) <= log(a[i]) - log(b[i]) <= log(U / num[i][j])

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int n, m, s;
int head[maxn], cnt, nex[maxn << ], vis[maxn];
int ans[maxn];
double d[maxn];
struct node
{
int u, v;
double w;
}Node[maxn << ]; void add(int u, int v, double w)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
nex[cnt] = head[u];
head[u] = cnt++;
} int spfa()
{
for(int i = ; i < maxn; i++) d[i] = INF;
mem(ans, );
deque<int> Q;
Q.push_front(s);
mem(vis, );
vis[s] = ;
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop_front();
vis[u] = ;
for(int i = head[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(d[v] > d[u] + Node[i].w)
{
d[v] = d[u] + Node[i].w;
if(!vis[v])
{
if(Q.empty()) Q.push_front(v);
else if(d[v] < d[Q.front()]) Q.push_front(v);
else Q.push_back(v);
vis[v] = ;
if(++ans[v] > n) return ;
}
}
}
}
return ;
} int main()
{
int l, r;
while(scanf("%d%d%d%d", &n, &m, &l, &r) != EOF)
{
mem(head, -);
cnt = ;
int u, v, x;
s = ;
for(int i = ; i <= n; i++)
for(int j = ; j <= m; j ++)
{
rd(x);
add(i, n + j, -log(l / (double) x));
add(n + j, i, log(r / (double) x));
} if(spfa())
cout << "NO" << endl;
else cout << "YES" << endl; } return ;
}
 

差分约束 HDU - 1384 HDU - 3592 HDU - 1531 HDU - 3666的更多相关文章

  1. hdu 1531(差分约束)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1531 差分约束的题之前也碰到过,刚好最近正在进行图论专题的训练,就拿来做一做. ①:对于差分不等式,a ...

  2. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

  3. hdu 1384 Intervals (差分约束)

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  4. hdu 1384 Intervals (差分约束)

    Problem - 1384 好歹用了一天,也算是看懂了差分约束的原理,做出第一条查分约束了. 题意是告诉你一些区间中最少有多少元素,最少需要多少个元素才能满足所有要求. 构图的方法是,(a)-> ...

  5. HDU 1384 Intervals【差分约束-SPFA】

    类型:给出一些形如a−b<=k的不等式(或a−b>=k或a−b<k或a−b>k等),问是否有解[是否有负环]或求差的极值[最短/长路径].例子:b−a<=k1,c−b&l ...

  6. hdu 1531 king(差分约束)

    King Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  7. POJ 1364 / HDU 3666 【差分约束-SPFA】

    POJ 1364 题解:最短路式子:d[v]<=d[u]+w 式子1:sum[a+b+1]−sum[a]>c      —      sum[a]<=sum[a+b+1]−c−1  ...

  8. hdu 1534 Schedule Problem (差分约束)

    Schedule Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. I - 动物狂想曲 HDU - 6252(差分约束)

    I - 动物狂想曲 HDU - 6252 雷格西桑和路易桑是好朋友,在同一家公司工作.他们总是一起乘地铁去上班.他们的路线上有N个地铁站,编号从1到N.1站是他们的家,N站是公司. 有一天,雷格西桑起 ...

随机推荐

  1. SVN安装和使用(简单版)

    为什么使用SVN? 通常软件的开发需要团队协作开发,每个人负责一个方面,都做完后需要把每个人的代码整合在一起,而每个人的代码方面不同或版本不同就会拖延开发进度对开发项目造成麻烦,如果一个人需要另一个人 ...

  2. 通过Hutool 调用远程API接口(POST/GET)

    背景:需要调用第三方接口,开启某项任务,用Hutool代替了HttpClient 调用第三方接口,简单粗暴. 代码如下: import java.util.Date; import org.apach ...

  3. web前端图片上传(3)--filereader

    这篇文章主要是为了介绍一种文件上传的方式.当然文件中是包含图片的.如果大家仔细看我的第一篇web前端图片上传(1)就会知道,其实也是按照这种方式上传你的,但是由于上次时间比较紧张,没有详细的介绍今天的 ...

  4. Jenkins分布式部署配置

    为什要使用Jenkins分布式? 利用jenkins分布式来构建job,当job量足够大的时候,可以有效的缓解jenkins-master上的压力,提高并行job数量, 减少job处于pending状 ...

  5. vue(3)—— vue的全局组件、局部组件

    组件 vue有局部组件和全局组件,这个组件后期用的会比较多,也是非常重要的 局部组件 template与components属性结合使用挂载 其中 Vmain.Vheader.Vleft.Vconte ...

  6. python之控制流

    https://www.cnblogs.com/evablogs/p/6691776.html 条件判断 简单if语句 1 2 3 4 5 >>>name='lily' >&g ...

  7. Win 10 和 Ubuntu 16.04 双系统,安装完成后,设置默认的启动项

    当安装好了 Windows 和 Ubuntu 双系统之后,默认的启动项是 Ubuntu,我们可以来设置默认的启动项, 开机时,在启动项选择处,可以通过↑↓ 键来选择启动哪个系统,第一行序号是 0 ,第 ...

  8. Gitlab源码库里代码提交后,如何触发jenkins自动构建?

    版本库里代码提交后,如何触发jenkins自动构建?这是一个面试题,感觉自己回答的并不好,因为并没有用过这个功能,之前公司实际项目用的是svn版本管理,一般都用立刻构建,和定时任务构建(不管代码是否有 ...

  9. Raneto部署知识库平台&支持中文搜索

    目录 环境 更新软件包 部署 Raneto 知识库平台 安装 Node 环境 安装 node 管理工具 查看 node 列表 安装需要的Node版本 使用 淘宝NPM源 git 使用代理设置,大陆地区 ...

  10. eval、exec及元类、单例实现的5种方法

    eval内置函数 # eval内置函数的使用场景:#   1.执行字符串会得到相应的执行结果#   2.一般用于类型转化,该函数执行完有返回值,得到dict.list.tuple等​dic_str = ...