CS229 Machine Learning Stanford Course by Andrew Ng

Course material, problem set Matlab code written by me, my notes about video course:

https://github.com/Yao-Yao/CS229-Machine-Learning

Contents:

  • supervised learning

Lecture 1

application field, pre-requisite knowledge

supervised learning, learning theory, unsupervised learning, reinforcement learning

Lecture 2

linear regression, batch gradient decent, stochastic gradient descent(SGD), normal equations

Lecture 3

locally weighted regression(Loess), probabilistic interpretation, logistic regression, perceptron

Lecture 4

Newton's method, exponential family(Bernoulli, Gaussian), generalized linear model(GLM), softmax regression

Lecture 5

discriminative vs  generative, Gaussian discriminent analysis, naive bayes, Laplace smoothing

Lecture 6

multinomial event model, nonlinear classifier, neural network, support vector machines(SVM), functional margin/geometric margin

Lecture 7

optimal margin classifier, convex optimization, Lagrangian multipliers, primal/dual optimization, KKT complementary condition, kernels

Lecture 8

Mercer theorem, L1-norm soft margin SVM, convergence criteria, coordinate ascent, SMO algorithm

  • learning theory

Lecture 9

underfit/overfit, bias/variance, training error/generalization error, Hoeffding inequality, central limit theorem(CLT), uniform convergence, sample complexity bound/error bound

Lecture 10

VC dimension, model selection, cross validation, structured risk minimization(SRM), feature selection, forward search/backward search/filter method

Lecture 11

Frequentist/Bayesian, online learning, SGD, perceptron algorithm, "advice for applying machine learning"

  • unsupervised learning

Lecture 12

k-means algorithm, density estimation, expectation-maximization(EM) algorithm, Jensen's inequality

Lecture 13

co-ordinate ascent, mixture of Gaussian(MoG), mixture of naive Bayes, factor analysis

Lecture 14

principal component analysis(PCA), compression, eigen-face

Lecture 15

latent sematic indexing(LSI), SVD, independent component analysis(ICA), "cocktail party"

  • reinforcement learning

Lecture 16

Markov decision process(MDP), Bellman's equations, value iteration, policy iteration

Lecture 17

continous state MDPs, inverted pendulum, discretize/curse of dimensionality, model/simulator of MDP, fitted value iteration

Lecture 18

state-action rewards, finite horizon MDPs, linear quadratic regulation(LQR), discrete time Riccati equations, helicopter project

Lecture 19

"advice for applying machine learning"-debug RL algorithm, differential dynamic programming(DDP), Kalman filter, linear quadratic Gaussian(LQG), LQG=KF+LQR

Lecture 20

partially observed MDPs(POMDP), policy search, reinforce algorithm, Pegasus policy search, conclusion

Stanford CS229 Machine Learning by Andrew Ng的更多相关文章

  1. 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera

    Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction

    最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...

随机推荐

  1. P1200 [USACO1.1]你的飞碟在这儿Your Ride Is He…

    P1200 [USACO1.1]你的飞碟在这儿Your Ride Is He…   大写祖母转数字  -64   发现dalao   #include<bits/stdc++.h> usi ...

  2. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

    1. 摘要 最近,神经网络的架构设计都是基于计算复杂度的间接度量,比如 FLOPs.然而,直接的度量比如运行速度,其实也会依赖于内存访问和平台特性等其它因素. 因此本文建议直接在目标平台上用直接度量进 ...

  3. PLSQL导出表的数据insert语句

    “Where clause”可以设置查询条件.设置好文件导出的路径(“Output file”),点击[Export]按钮,就可以导出INSERT语句了. 导出之后使用nodepad打开: 但是如果我 ...

  4. spring BeanUtils.copyProperties只拷贝不为null的属性

    在MVC的开发模式中经常需要将model与pojo的数据绑定,apache和spring的工具包中都有BeanUtils,使用其中的copyProperties方法可以非常方便的进行这些工作,但在实际 ...

  5. fiddler查看http压缩格式传输的报文

    1.当传输的报文比较大时,http一般会采取压缩的格式(如gzip)传输(支持编码:Accept-Encoding: gzip, deflate, br).2.当采用压缩格式编码传输时,直接在raw中 ...

  6. 四十四:数据库之SQLAlchemy之join实现复杂查询

    准备工作 from datetime import datetime from sqlalchemy import create_engine, Column, Integer, String, Da ...

  7. Linux日志筛选命令

    (1)Linux目录操作命令 cd ..退出当前目录,返回上一级目录:cd / 退出当前目录,返回根目录: mkdir命令用于创建一个新的目录:rmdir命令功能删除指定的空目录. (2)Linux筛 ...

  8. freebsd 隐藏ssh版本号

    方案一: vi /etc/ssh/sshd_config VersionAddendum 为空或者no或者别的信息 /etc/rc.d/sshd restart 方案二: https://kram.n ...

  9. 【BW系列】SAP BW on HANA 迁移问题

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[BW系列]SAP BW on HANA 迁移问 ...

  10. hadop-eclipse-plugin导入plugins后没有mapreduce视图

    这种现象一般由于安装在eclipse\plugins下的插件没有导入的问题. 解决方法:把 eclipse\configuration\org.eclipse.update 删除掉.出现这种情况的原因 ...