CS229 Machine Learning Stanford Course by Andrew Ng

Course material, problem set Matlab code written by me, my notes about video course:

https://github.com/Yao-Yao/CS229-Machine-Learning

Contents:

  • supervised learning

Lecture 1

application field, pre-requisite knowledge

supervised learning, learning theory, unsupervised learning, reinforcement learning

Lecture 2

linear regression, batch gradient decent, stochastic gradient descent(SGD), normal equations

Lecture 3

locally weighted regression(Loess), probabilistic interpretation, logistic regression, perceptron

Lecture 4

Newton's method, exponential family(Bernoulli, Gaussian), generalized linear model(GLM), softmax regression

Lecture 5

discriminative vs  generative, Gaussian discriminent analysis, naive bayes, Laplace smoothing

Lecture 6

multinomial event model, nonlinear classifier, neural network, support vector machines(SVM), functional margin/geometric margin

Lecture 7

optimal margin classifier, convex optimization, Lagrangian multipliers, primal/dual optimization, KKT complementary condition, kernels

Lecture 8

Mercer theorem, L1-norm soft margin SVM, convergence criteria, coordinate ascent, SMO algorithm

  • learning theory

Lecture 9

underfit/overfit, bias/variance, training error/generalization error, Hoeffding inequality, central limit theorem(CLT), uniform convergence, sample complexity bound/error bound

Lecture 10

VC dimension, model selection, cross validation, structured risk minimization(SRM), feature selection, forward search/backward search/filter method

Lecture 11

Frequentist/Bayesian, online learning, SGD, perceptron algorithm, "advice for applying machine learning"

  • unsupervised learning

Lecture 12

k-means algorithm, density estimation, expectation-maximization(EM) algorithm, Jensen's inequality

Lecture 13

co-ordinate ascent, mixture of Gaussian(MoG), mixture of naive Bayes, factor analysis

Lecture 14

principal component analysis(PCA), compression, eigen-face

Lecture 15

latent sematic indexing(LSI), SVD, independent component analysis(ICA), "cocktail party"

  • reinforcement learning

Lecture 16

Markov decision process(MDP), Bellman's equations, value iteration, policy iteration

Lecture 17

continous state MDPs, inverted pendulum, discretize/curse of dimensionality, model/simulator of MDP, fitted value iteration

Lecture 18

state-action rewards, finite horizon MDPs, linear quadratic regulation(LQR), discrete time Riccati equations, helicopter project

Lecture 19

"advice for applying machine learning"-debug RL algorithm, differential dynamic programming(DDP), Kalman filter, linear quadratic Gaussian(LQG), LQG=KF+LQR

Lecture 20

partially observed MDPs(POMDP), policy search, reinforce algorithm, Pegasus policy search, conclusion

Stanford CS229 Machine Learning by Andrew Ng的更多相关文章

  1. 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera

    Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction

    最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...

随机推荐

  1. OpenFlow Switch 1.3 规范

    目录 文章目录 目录 OpenFlow 架构 OpenFlow 标准和规范 OpenFlow 的端口(Port) OpenFlow 的流表(Flow Table) OpenFlow 的组表(Group ...

  2. 阶段3 2.Spring_03.Spring的 IOC 和 DI_1 ioc的概念和作用

    IOC的含义 new的方式创建对象,是主动去找对象.对我的资源独立就变的很难,因为这有明显的依赖关系 第二种方式创建对象.app断开了和资源的联系,.而是去找工厂要一个资源.由工厂负责和资源去的联系, ...

  3. eigenvalues problem

    由于在看paper中经常会看到generalized eigenvalues.eigenvalues problem等字眼,今晚终于开始认真地重新看了一下线性代数中这部分内容.下面是在学习过程中找出来 ...

  4. jdbc 对sqlite的基本操作

    1.向数据库中创建表 public void addTable( String dbpath) { //创建表单的sql语句 String createtablesql= " CREATE ...

  5. java:Review(J2ee)

    1.oracle: 1.1 增:insert into 删:delete from 改:update tablename set 查:select * from 1.2 聚合函数 max,min,av ...

  6. python-爬取糗事百科热图

    此次运用requests和beautifulSoup爬取糗事百科热图,常用的网络库有:urllib,urllib3,requests,选取其中之一就行了:HTML/XML解析器有:lxml,Beaut ...

  7. (转)在Kubernetes集群中使用JMeter对Company示例进行压力测试

    背景 压力测试是评估应用性能的一种有效手段.此外,越来越多的应用被拆分为多个微服务而每个微服务的性能不一,有的微服务是计算密集型,有的是IO密集型. 因此,压力测试在基于微服务架构的网络应用中扮演着越 ...

  8. [官网]关于EPEL

    EPEL/zh-cn https://fedoraproject.org/wiki/EPEL/zh-cn Contents [hide]  1企业版 Linux 附加软件包(EPEL) 1.1什么是企 ...

  9. Ubuntu 19.04 下使用Remmina连接window服务器部署maven项目

    先将打包好的war包上传到tomcat的webapps目录下 如果配置了tomcat的虚拟路径,那就放进虚拟路径的webapps文件李 修改tomcat安装目录下的conf/server.xml文件 ...

  10. numpy-添加操作大全

    合并 hstack(tup):按行合并 [前面有个 h,可以理解为 行,这样方便记忆] vstack(tup):按列合并 参数虽然是 tuple,但是 list 也行,可以合并2个或者多个数组. a= ...