CS229 Machine Learning Stanford Course by Andrew Ng

Course material, problem set Matlab code written by me, my notes about video course:

https://github.com/Yao-Yao/CS229-Machine-Learning

Contents:

  • supervised learning

Lecture 1

application field, pre-requisite knowledge

supervised learning, learning theory, unsupervised learning, reinforcement learning

Lecture 2

linear regression, batch gradient decent, stochastic gradient descent(SGD), normal equations

Lecture 3

locally weighted regression(Loess), probabilistic interpretation, logistic regression, perceptron

Lecture 4

Newton's method, exponential family(Bernoulli, Gaussian), generalized linear model(GLM), softmax regression

Lecture 5

discriminative vs  generative, Gaussian discriminent analysis, naive bayes, Laplace smoothing

Lecture 6

multinomial event model, nonlinear classifier, neural network, support vector machines(SVM), functional margin/geometric margin

Lecture 7

optimal margin classifier, convex optimization, Lagrangian multipliers, primal/dual optimization, KKT complementary condition, kernels

Lecture 8

Mercer theorem, L1-norm soft margin SVM, convergence criteria, coordinate ascent, SMO algorithm

  • learning theory

Lecture 9

underfit/overfit, bias/variance, training error/generalization error, Hoeffding inequality, central limit theorem(CLT), uniform convergence, sample complexity bound/error bound

Lecture 10

VC dimension, model selection, cross validation, structured risk minimization(SRM), feature selection, forward search/backward search/filter method

Lecture 11

Frequentist/Bayesian, online learning, SGD, perceptron algorithm, "advice for applying machine learning"

  • unsupervised learning

Lecture 12

k-means algorithm, density estimation, expectation-maximization(EM) algorithm, Jensen's inequality

Lecture 13

co-ordinate ascent, mixture of Gaussian(MoG), mixture of naive Bayes, factor analysis

Lecture 14

principal component analysis(PCA), compression, eigen-face

Lecture 15

latent sematic indexing(LSI), SVD, independent component analysis(ICA), "cocktail party"

  • reinforcement learning

Lecture 16

Markov decision process(MDP), Bellman's equations, value iteration, policy iteration

Lecture 17

continous state MDPs, inverted pendulum, discretize/curse of dimensionality, model/simulator of MDP, fitted value iteration

Lecture 18

state-action rewards, finite horizon MDPs, linear quadratic regulation(LQR), discrete time Riccati equations, helicopter project

Lecture 19

"advice for applying machine learning"-debug RL algorithm, differential dynamic programming(DDP), Kalman filter, linear quadratic Gaussian(LQG), LQG=KF+LQR

Lecture 20

partially observed MDPs(POMDP), policy search, reinforce algorithm, Pegasus policy search, conclusion

Stanford CS229 Machine Learning by Andrew Ng的更多相关文章

  1. 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera

    Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction

    最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...

随机推荐

  1. Origin 2017 给曲线加标记符号

    最近在用Origin 2017画曲线图,需要给图像得曲线加上不同得标记符号用以区分,把操作步骤记录下来,免得忘了. 1.用Origin 2017打开一个曲线图,在任意一条曲线上点击右键弹出菜单,选择[ ...

  2. 【转】How-to: Enable User Authentication and Authorization in Apache HBase

    With the default Apache HBase configuration, everyone is allowed to read from and write to all table ...

  3. KVM + LinuxBridge 的网络虚拟化解决方案实践

    目录 文章目录 目录 前言 Linux bridge 的基本操作 创建 Bridge 将 veth pair 连上 Bridge 为 Bridge 配置 IP 地址 将物理网卡接口设备挂靠 Bridg ...

  4. ansible最佳实战部署nginx

    1.先看下整体目录架构 [root@bogon ~]# cd /etc/ansible/ [root@bogon ansible]# tree . ├── ansible.cfg ├── group_ ...

  5. python中sys.argv使用

    创建一个脚本,内容如下 [root@bogon ~]# cat a.py #conding:utf-8import sysprint(sys.argv[0]) # 打印sys.argv的第0个参数 执 ...

  6. bootstrap datetimepicker、bootstrap datepicker日期组件对范围的简单封装

    1.bootstrap datepicker 使用 <div class="row form-group"> <label class="control ...

  7. Spring事务管理配置以及异常处理

    Spring事务管理配置: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=" ...

  8. Sqlserver实现故障转移 — 域控(1)

    一  .实现目的:实现两台sqlserver数据库服务器的实时备份及故障转移:即:其中一台数据库服务器宕机后,应用程序可自动连接到另一台数据库服务器继续运行. 二.域控:域控制器是指在“域”模式下,至 ...

  9. 【HANA系列】SAP Vora(SAP HANA和Hadoop)简析

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP Vora(SAP HAN ...

  10. Egret入门学习日记 --- 第五篇(书中 3.5节 内容)

    第五篇(书中 3.5节 内容) 今天得把昨天的问题解决了才行. 去了Q群,碰到一位大大,他给我解惑了.Thanks♪(・ω・)ノ 这是我之前按照书上写的方式写的,并没有效果. 然后大大给我解答了: 后 ...