luogu P3768 简单的数学题 杜教筛 + 欧拉反演 + 逆元
#include<bits/stdc++.h>
#define maxn 10200006
#define ll long long
#define M 10000007
using namespace std;
int cnt;
ll sumv[maxn], rev4, rev6, mod, rev2;
bool vis[maxn];
ll phi[maxn], prime[maxn];
map<ll,ll>ansphi;
void setIO(string s)
{
string in=s+".in";
freopen(in.c_str(),"r",stdin);
}
ll qpow(ll base, ll k)
{
ll tmp=1;
while(k)
{
if(k&1) tmp=tmp*base%mod;
base=base*base%mod;
k>>=1;
}
return tmp;
}
void init()
{
int i,j;
rev4=qpow(4ll, mod-2), rev6=qpow(6ll, mod-2), rev2=qpow(2ll, mod-2);
phi[1]=1;
for(i=2;i<=M;++i)
{
if(!vis[i]) prime[++cnt]=i, phi[i]=i-1;
for(j=1;j<=cnt&&1ll*i*prime[j]<=M;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(i=1;i<=M;++i) sumv[i]=(sumv[i-1]+(1ll*phi[i]*i%mod*i%mod))%mod;
}
// 平方
ll cal1(ll i)
{
i%=mod;
ll re=i%mod;
re=re*(i+1)%mod;
re=re*(i+i+1)%mod;
re=(re*rev6)%mod;
return re;
}
// 立方
ll cal2(ll i)
{
i%=mod;
ll re=i%mod;
re=(re*i)%mod;
re=(re*(i+1))%mod;
re=re*(i+1)%mod;
re=(re*rev4)%mod;
return re;
}
ll get(ll n)
{
if(n<=M) return sumv[n];
if(ansphi[n]) return ansphi[n];
ll i,j,re=cal2(n),tmp;
for(i=2;i<=n;i=j+1)
{
j=n/(n/i);
tmp=(cal1(j)-cal1(i-1)+mod)%mod;
tmp=(tmp*get(n/i))%mod;
re=(re-tmp+mod)%mod;
}
return ansphi[n]=re;
}
ll calc(ll n)
{
n%=mod;
return (((n*(n+1))%mod)*(rev2%mod))%mod ;
}
int main()
{
// setIO("input");
ll n,i,j,re=0,tmp=0;
scanf("%lld%lld",&mod,&n);
init();
for(i=1;i<=n;i=j+1)
{
j=n/(n/i);
tmp=(calc(n/i)*calc(n/i)%mod*(get(j)-get(i-1)+mod)%mod)%mod;
re=(re+tmp+mod)%mod;
}
printf("%lld\n",re);
return 0;
}
luogu P3768 简单的数学题 杜教筛 + 欧拉反演 + 逆元的更多相关文章
- P3768 简单的数学题 [杜教筛,莫比乌斯反演]
\[\sum_{i=1}^{n}\sum_{j=1}^{n} ij\gcd(i,j)\] \[=\sum_{d=1}^{n} d \sum_{i=1}^{n}\sum_{j=1}^{n} ij[\gc ...
- P3768 简单的数学题 杜教筛+推式子
\(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ij ...
- [luogu3768] 简单的数学题 [杜教筛]
题面: 传送门 实际上就是求: 思路: 看到gcd就先反演一下,过程大概是这样: 明显的一步反演 这里设,S(x)等于1到x的和 然后把枚举d再枚举T变成先枚举T再枚举其约数d,变形: 后面其中两项展 ...
- 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...
- 2019年南京网络赛E题K Sum(莫比乌斯反演+杜教筛+欧拉降幂)
目录 题目链接 思路 代码 题目链接 传送门 思路 首先我们将原式化简: \[ \begin{aligned} &\sum\limits_{l_1=1}^{n}\sum\limits_{l_2 ...
- Luogu P3768 简单的数学题
非常恶心的一道数学题,推式子推到吐血. 光是\(\gcd\)求和我还是会的,但是多了个\(ij\)是什么鬼东西. \[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)=\sum_ ...
- Luogu 4213 【模板】杜教筛(Sum)
当作杜教筛的笔记吧. 杜教筛 要求一个积性函数$f(i)$的前缀和,现在这个东西并不是很好算,那么我们考虑让它卷上另外一个积性函数$g(i)$,使$(f * g)$的前缀和变得方便计算,然后再反推出这 ...
- LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...
- bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
4176: Lucas的数论 Time Limit: 30 Sec Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...
随机推荐
- Spring cloud gateway自定义filter以及负载均衡
自定义全局filter package com.example.demo; import java.nio.charset.StandardCharsets; import org.apache.co ...
- GitLab 安装,配置及维护
参考: GitLab 官方文档 docker-gitlab,通过 docker-compose 快速安装 GitLab rake,是 Rails 的工具,类似 ruby 中常用的的 make.通过 R ...
- Vue混入:全局混入
一 项目结构 二 main.js import Vue from "vue"; import App from "./App.vue"; Vue.config. ...
- linux + eclipse + cdt 报错undefined reference......好麻烦的,这位大牛给出的方法可行,特此MARK!!!!
http://bbs.csdn.net/topics/390239632 kerosun kerosun 等级: 结帖率:96.92% 楼主 发表于: 2012-10-11 12:00:51 比如 ...
- python datetime模块的strftime()
strftime() 可以对datetime对象进行格式化,生成需要时间格式的时间 strptime() 可以对格式化后的时间再生成datetime对象 格式化时间时,如果不想要-来隔开,还可以 ...
- 重温spark基本原理
(一)spark特点: 1.高效,采用内存存储中间计算结果,并通过并行计算DAG图的优化,减少了不同任务之间的依赖,降低了延迟等待时间. 2.易用,采用函数式编程风格,提供了超过80种不同的Trans ...
- Hibernate4教程二:基本配置(2)
<hibernate-mapping>元素 这个元素是xxx.hbm.xml配置的根元素,定义如下: java代码: <hibernate-mapping schema=" ...
- Django学习记录--~Biubiubiu
Day One Django常用命令 1.创建Django网站框架 django-admin startproject mysite # mysite为定义的项目文件夹名称 2.超级用户创建 py m ...
- 奇异值分解基础(SVD)
最近要了解一下Incremental PCA的一些知识,然后看到一篇论文里面讲到了SVD(奇异值分解),奈何自己以前没有把机器学习的课好好上,现在很多东西还是要补回来.所以,我就想了解一些SVD的基础 ...
- iviewUI框架,使用table表格内render下拉框select被遮盖问题
使用props:{ transfer:true },即可 1.原本代码: