CodeForces - 1C:Ancient Berland Circus (几何)
Nowadays all circuses in Berland have a round arena with diameter 13 meters, but in the past things were different.
In Ancient Berland arenas in circuses were shaped as a regular (equiangular) polygon, the size and the number of angles could vary from one circus to another. In each corner of the arena there was a special pillar, and the rope strung between the pillars marked the arena edges.
Recently the scientists from Berland have discovered the remains of the ancient circus arena. They found only three pillars, the others were destroyed by the time.
You are given the coordinates of these three pillars. Find out what is the smallest area that the arena could have.
Input
The input file consists of three lines, each of them contains a pair of numbers –– coordinates of the pillar. Any coordinate doesn't exceed 1000 by absolute value, and is given with at most six digits after decimal point.
Output
Output the smallest possible area of the ancient arena. This number should be accurate to at least 6 digits after the decimal point. It's guaranteed that the number of angles in the optimal polygon is not larger than 100.
Examples
0.000000 0.000000
1.000000 1.000000
0.000000 1.000000
1.00000000
题意:有一个正多边形,现在我们只知道其中3个点的坐标,求原多边形的面积,如果有多个满足,求最小面积。
思路:已知三点,我们可以确定外接圆,然后显然,我们需要多边形的边长最大(或者对于的圆心角最大),但是由于有钝角或者锐角,求最大边长可能要讨论。所以我们求最大圆心角。
可能推论:最大圆心角=三角形的三条边对应的圆心角的gcd。然后就得到了有2pi/gcd边。blabla。
(得到三个角的时候,第三个角=2pi-A-B。而直接求会WA。。。
#include<bits/stdc++.h>
using namespace std;
const double eps=1e-;
const double pi=acos(-1.0);
double Gcd(double a,double b)
{
while(fabs(a)>eps&&fabs(b)>eps){
if(a>b) a-=floor(a/b)*b;
else b-=floor(b/a)*a;
}
return a+b;
}
double x[],y[],L1,L2,L3,S,R;
double dist(int a,int b){
return sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}
double area(){
double p=(L1+L2+L3)/2.0; return sqrt(p*(p-L1)*(p-L2)*(p-L3));
}
int main()
{
for(int i=;i<=;i++) scanf("%lf%lf",&x[i],&y[i]);
L1=dist(,); L2=dist(,); L3=dist(,);
S=area(); R=L1*L2*L3/(S*);
double A=acos((R*R+R*R-L3*L3)/(*R*R));
double B=acos((R*R+R*R-L2*L2)/(*R*R));
double C=*pi-A-B;
double ang=Gcd(Gcd(A,B),C);
double ans=pi/ang*R*R*sin(ang);
printf("%.6lf\n",ans);
return ;
}
CodeForces - 1C:Ancient Berland Circus (几何)的更多相关文章
- Codeforces 1C Ancient Berland Circus
传送门 题意 给出一正多边形三顶点的坐标,求此正多边形的面积最小值. 分析 为了叙述方便,定义正多边形的单位圆心角u为正多边形的某条边对其外接圆的圆心角(即外接圆的某条弦所对的圆心角). (1)多边形 ...
- codforces 1C Ancient Berland Circus(几何)
题意 给出正多边形上三个点的坐标,求正多边形的最小面积 分析 先用三边长求出外接圆半径(海伦公式),再求出三边长对应的角度,再求出三个角度的gcd,最后答案即为\(S*2π/gcd\),S为gcd对应 ...
- cf------(round)#1 C. Ancient Berland Circus(几何)
C. Ancient Berland Circus time limit per test 2 seconds memory limit per test 64 megabytes input sta ...
- AC日记——codeforces Ancient Berland Circus 1c
1C - Ancient Berland Circus 思路: 求出三角形外接圆: 然后找出三角形三条边在小数意义下的最大公约数; 然后n=pi*2/fgcd; 求出面积即可: 代码: #includ ...
- Codeforces Beta Round #1 C. Ancient Berland Circus 计算几何
C. Ancient Berland Circus 题目连接: http://www.codeforces.com/contest/1/problem/C Description Nowadays a ...
- C. Ancient Berland Circus(三点确定最小多边形)
题目链接:https://codeforces.com/problemset/problem/1/C 题意:对于一个正多边形,只给出了其中三点的坐标,求这个多边形可能的最小面积,给出的三个点一定能够组 ...
- 「CF1C Ancient Berland Circus」
CF第一场比赛的最后一题居然是计算几何. 这道题的考点也是比较多,所以来写一篇题解. 前置芝士 平面直角坐标系中两点距离公式:\(l=\sqrt{(X_1-X_2)^2+(Y_1-Y_2)^2}\) ...
- Codeforces 1 C. Ancient Berland Circus-几何数学题+浮点数求gcd ( Codeforces Beta Round #1)
C. Ancient Berland Circus time limit per test 2 seconds memory limit per test 64 megabytes input sta ...
- codeforces 1C (非原创)
C. Ancient Berland Circus time limit per test 2 seconds memory limit per test 64 megabytes input sta ...
随机推荐
- iOS 7 修改默认布局从status bar 底部开始
最近在对公司的一个老项目进行版本升级,添加了导航栏和tabBar,并且在个人中心界面隐藏navigationBar,于是在控制器里添加了如下对象方法: - (void)viewWillAppear:( ...
- Laravel开发:多用户登录验证(2)
上一篇讲了最基本的User验证,现在来讲一下Admin的验证. 先贴代码, 路由:routes/web.php加上以下代码, //... Route::get('admin/login', 'Admi ...
- Myecplise Tomcat 启动很慢
今天突然遇到一个问题,tomcat在Myecplse启动非常慢,直接用tomcat自带的start.bat启动很快,如果通过Myeclipse启动会发现项目一直在实例化,最后发现是因为加了断点调试,断 ...
- 什么是GIL锁以及作用
全局解释锁,每次只能一个线程获得cpu的使用权:为了线程安全,也就是为了解决多线程之间的数据完整性和状态同步而加的锁,因为我们知道线程之间的数据是共享的.
- Linux修改网络配置
修改:/etc/sysconfig/network-scripts/ifcfg-eth0 重启网卡/etc/rc.d/init.d/network restart
- python-安装 pip
https://pip.pypa.io/en/stable/installing/ wget https://bootstrap.pypa.io/get-pip.py python get-pip.p ...
- ob 函数讲解
ob的基本原则:如果ob缓存打开,则echo的数据首先放在ob缓存.如果是header信息,直接放在程序缓存.当页面履行到最后,会把ob缓存的数据放到程序缓存,然后依次返回给涉猎器.下面我说说ob的基 ...
- 快照COW
What is Copy-on-write? Copy-on-write Copy-on-write (sometimes referred to as "COW") i ...
- Android FrameLayout单帧布局
FrameLayout:所有控件位于左上角,并且直接覆盖前面的子元素. 在最上方显示的层加上: android:clickable="true" 可以避免点击上层触发底层. 实例: ...
- 通过套接字(socket)和UDP协议实现网络通信
UDP---用户数据报协议,是一个简单的面向数据报的运输层协议.(无连接.封包.大小限制.速度快). 一.UDP协议的特点: 将数据及源和目的地封装成数据包中,不需要建立连接. 每个数据报的大小限制在 ...