题目链接

  分数规划题,详见luogu题解

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#define maxn 100010
#define eps 1e-9
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} struct Edge{
int next,to;double val;
}edge[maxn*];
int head[maxn],num;
inline void add(int from,int to,double val){
edge[++num]=(Edge){head[from],to,val};
head[from]=num;
} bool vis[maxn];
double dis[maxn]; bool spfa(int x,double mid){
vis[x]=;
for(int i=head[x];i;i=edge[i].next){
int to=edge[i].to;
if(dis[to]<=dis[x]+edge[i].val+mid) continue;
dis[to]=dis[x]+edge[i].val+mid;
if(vis[to]) return ;
if(spfa(to,mid)) return ;
}
vis[x]=;
return ;
}
int n,m;
bool check(double mid){
memset(dis,,sizeof(dis));
memset(vis,,sizeof(vis));
for(int i=;i<=n;++i)
if(spfa(i,mid)) return ;
return ;
} int main(){
n=read()+,m=read();
for(int i=;i<=m;++i){
int from=read(),to=read(),a=read(),b=read(),c=read(),d=read();
if(c!=) add(to,from,a-d);
add(from,to,b+d);
}
double l=,r=0x7fffffff,ans=;
while(fabs(r-l)>eps){
double mid=(l+r)/2.0;
if(check(mid)){
ans=mid;
l=mid;
}
else r=mid;
}
printf("%.2lf",ans);
return ;
}

【Luogu】P3288方伯伯运椰子(消圈定理)的更多相关文章

  1. bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]

    3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...

  2. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  3. 【BZOJ3597】方伯伯运椰子(分数规划,网络流)

    [BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...

  4. 3597: [Scoi2014]方伯伯运椰子[分数规划]

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 404  Solved: 249 [Submit][Sta ...

  5. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  6. 「SCOI2014」方伯伯运椰子 解题报告

    「SCOI2014」方伯伯运椰子 可以看出是分数规划 然后我们可以看出其实只需要改变1的流量就可以了,因为每次改变要保证流量守恒,必须流成一个环,在正负性确定的情况下,变几次是无所谓的. 然后按照套路 ...

  7. Bzoj3597: [Scoi2014]方伯伯运椰子

    题面 传送门 Sol 消圈定理:如果一个费用流网络的残量网络有负环,那么这个费用流不优 于是这个题就可以建出残量网络,然后分数规划跑负环了 # include <bits/stdc++.h> ...

  8. 解题:SCOI 2014 方伯伯运椰子

    题面 很有趣的一道题,看起来是个神奇网络流,其实我们只要知道网络的一些性质就可以做这道题了 因为题目要求流量守恒,所以我们其实是在网络中搬运流量,最终使得总费用减小,具体来说我们可以直接把这种“搬运” ...

  9. 洛谷3288 SCOI2014方伯伯运椰子(分数规划+spfa)

    纪念博客又一次爆炸了 首先,对于本题中,我们可以发现,保证存在正整数解,就表示一定费用会降低.又因为一旦加大的流量,费用一定会变大,所以总流量一定是不变的 那么我们这时候就需要考虑一个退流的过程 对于 ...

随机推荐

  1. git 简单使用(待完善)

    git是一个分布式版本控制器,简单来说就是可以记录每次代码的修改和提交,方便我们查看修改记录和版本的回退 工作流程 基本概念 仓库 git 是一个分布式版本控制器,其单位就是仓库,每个仓库就是当前gi ...

  2. angular2中一种换肤实现方案

    思路:整体思路是准备多套不同主题的css样式.在anguar项目启动时,首先加载的index.html中先引入一套默认的样式.当我们页面有动作时再切换css.  可以通过url传参触发,也可以通过bu ...

  3. 写给iOS小白的MVVM教程(序)

    这几天,需要重构下部分代码,这里简要记录下.但是涉及的技术要点还是很多,所以分为多个篇章叙述.此教程来源于,并将于应用于实践,不做过多的概念性阐释和争论.每个篇章都会附上实际的可执行的代码.因涉及的技 ...

  4. 洛谷P4316 绿豆蛙的归宿(期望)

    题意翻译 「Poetize3」 题目背景 随着新版百度空间的上线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 题目描述 给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出 ...

  5. 【例题收藏】◇例题·III◇ 木と整数 / Integers on a Tree

    ◇例题·III◇ 木と整数 / Integers on a Tree 只需要一个美妙的转换,这道题就会变得无比美妙…… 来源:+AtCoder 2148(ARC-063 E)+ ◆ 题目大意 给定一棵 ...

  6. MySQL另类的备份恢复方法——innodb可传输表空间

      Preface       There're many ways in backing up or migrating data from one server to another one.Lo ...

  7. Thymeleaf显示Map集合数据

    <select class="form-control zz-set-input-size" id="channel"> <option va ...

  8. mysql 创建用户、授权、修改密码

    以下操作都要在mysql所在机器操作 一.创建用户 CREATE USER 'dog'@'localhost' IDENTIFIED BY '123456'; 或 insert into mysql. ...

  9. Shell学习——终端打印

    1.echo1.1.默认情况下,echo在每次调用后会添加一个换行符1.2.待打印的内容,可以用单引号.双引号或者直接打印,不同的方式,有各自的限制1.2.1.使用不带引号的echo时,没法打印分好( ...

  10. nginx虚拟主机搭建

    nginx [engine x]是 Igor Sysoev 编写的一个 HTTP 和反向代理服务器,另外它也可以 作为邮件代理服务器. 它已经在众多流量很大的俄罗斯网站上使用了很长时间,这些网站包括 ...