题目链接:http://codeforces.com/problemset/problem/358/D

题意:

  有n个物品A[i]摆成一排,你要按照某一个顺序将它们全部取走。

  其中,取走A[i]的收益为:

    (1)若A[i-1]和A[i+1]都没被取走,则收益为a[i]

    (2)若A[i-1]和A[i+1]被取走了一个,则收益为b[i]

    (3)若A[i-1]和A[i+1]都被取走,则收益为c[i]

    注:将A[1]的左边和A[n]的右边视为永远有一个取不走的物品。

  问你最大收益是多少。

题解:

  表示状态:

    dp[i][0/1] = max wealth

    表示A[i]比A[i-1]先取(0)或后取(1),此时取走A[1 to i-1]的最大收益。

  找出答案:

    ans = dp[n+1][1]

    因为可以看做A[n]右边有一个不取走的物品

    所以dp[n+1][1]对应的就是将所有物品取走的最大获益

  如何转移:

    dp[i][0] = max(dp[i-1][0]+b[i-1], dp[i-1][1]+c[i-1])

    dp[i][1] = max(dp[i-1][0]+a[i-1], dp[i-1][1]+b[i-1])

    根据A[i-1]的左右情况,加上对应的取走A[i-1]的获利,即为当前的总获利。

  边界条件:

    dp[1][0] = 0

    dp[1][1] = -INF

    因为将A[1]左边看作有一个物体,所以只能是A[1]先选,当前总获利为0。

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 3005
#define INF 1000000000 using namespace std; int n;
int a[MAX_N];
int b[MAX_N];
int c[MAX_N];
int dp[MAX_N][]; void read()
{
cin>>n;
for(int i=;i<=n;i++) cin>>a[i];
for(int i=;i<=n;i++) cin>>b[i];
for(int i=;i<=n;i++) cin>>c[i];
} void work()
{
dp[][]=;
dp[][]=-INF;
for(int i=;i<=n+;i++)
{
dp[i][]=max(dp[i-][]+b[i-],dp[i-][]+c[i-]);
dp[i][]=max(dp[i-][]+a[i-],dp[i-][]+b[i-]);
}
cout<<dp[n+][]<<endl;
} int main()
{
read();
work();
}

Codeforces 358D Dima and Hares:dp【只考虑相邻元素】的更多相关文章

  1. Codeforces 358D Dima and Hares

    http://codeforces.com/contest/358/problem/D 题意:给出n个数,每个数取走的贡献与相邻的数有关,如果取这个数的时候,左右的数都还没被取,那么权值为a,如果左右 ...

  2. Codeforces Round #208 (Div. 2) 358D Dima and Hares

    题目链接:http://codeforces.com/problemset/problem/358/D 开始题意理解错,整个就跪了= = 题目大意:从1到n的位置取数,取数的得到值与周围的数有没有取过 ...

  3. [CodeForce]358D Dima and Hares

    有N<3000只宠物要喂,每次只能喂一只,每喂一只宠物,宠物的满足度取决于: 1 紧靠的两个邻居都没喂,a[i] 2 邻居中有一个喂过了,b[i] 3 两个邻居都喂过了,c[i] 把所有宠物喂一 ...

  4. CF358D Dima and Hares dp

    状态的定义挺奇特的~ 发现最终每一个物品一定都会被选走. 令 $f[i][0/1]$ 表示 $a[i]$ 在 $a[i-1]$ 前/后选时 $1$~$(i-1)$ 的最优解. 因为一个数字的价值只由其 ...

  5. Codeforces 358 D. Dima and Hares

    dp[i][0]表示i号兔子先于i-1号兔子喂食,dp[i][1]反过来. 倒着DP D. Dima and Hares time limit per test 2 seconds memory li ...

  6. codeforces 429 On the Bench dp+排列组合 限制相邻元素,求合法序列数。

    限制相邻元素,求合法序列数. /** 题目:On the Bench 链接:http://codeforces.com/problemset/problem/840/C 题意:求相邻的元素相乘不为平方 ...

  7. 汕头市队赛 SRM10 dp只会看规律 && bzoj1766

    dp只会看规律 SRM 10 描述 平面上有n个点(xi,yi),用最少个数的底边在x轴上且面积为S的矩形覆盖这些点(在边界上也算覆盖) 输入格式 第一行两个整数n,S接下来n行每行两个整数xi,yi ...

  8. CF358D Dima and Hares

    CF358D Dima and Hares 洛谷评测传送门 题目描述 Dima liked the present he got from Inna very much. He liked the p ...

  9. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

随机推荐

  1. oracle中的not in和not exists注意事项

    NOT IN:不包括空值 NOT EXISTS:包括空值

  2. [译]GLUT教程 - 子菜单

    Lighthouse3d.com >> GLUT Tutorial >> Pop-up Menus >> Sub Menus 上一节我们介绍了如何创建普通菜单和如果 ...

  3. hadoop生态系统学习之路(八)hbase与hive的数据同步以及hive与impala的数据同步

    在之前的博文中提到,hive的表数据是能够同步到impala中去的. 一般impala是提供实时查询操作的,像比較耗时的入库操作我们能够使用hive.然后再将数据同步到impala中.另外,我们也能够 ...

  4. CSMA/CD解释与理解

    1. CSMA/CD含义 CSMA/CD即载波监听多点接入/碰撞检测,此协议是使用在总线型网络中的,不同计算机是通过多点接入的方式连接在一起.协议的重点在于监听和碰撞检测. 2. 为什么要监听和碰撞检 ...

  5. 更改Mysql 密码的4种方法(转)

    原文:http://www.jb51.net/article/39454.htm 方法1: 用SET PASSWORD命令 首先登录MySQL. 格式:mysql> set password f ...

  6. 简单的积雪shader

    // Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject' Shader "Custom/CoverSnow&q ...

  7. 移动端meta viewport

    <meta name="viewport" content=" width=device-width, user-scalable=no, initial-scal ...

  8. php记录百度等搜索引擎蜘蛛的来访记录

    <?php function is_robot() { $useragent = strtolower($_SERVER['HTTP_USER_AGENT']); if (strpos($use ...

  9. 深入 JavaScript 中的对象以及继承原理

    ES6引入了一个很甜的语法糖就是 class, class 可以帮助开发者回归到 Java 时代的面向对象编程而不是 ES5 中被诟病的面向原型编程. 我也在工作的业务代码中大量的使用 class, ...

  10. MySQL查询含转义字符反斜杠的时候一直为零查询无效

    今天在查询一个字段时显示一直显示为0,可是表里明明有对应的数值. ) as vote_your_count from vote_beauty where beauty_person = '\u5c0f ...