Description

对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除以k,现要求其中的最小值

Input

第一行2个正整数,分别为n和m
   以下m行,每行3个数,表示边连接的信息

Output

一行一个数,表示最小圈的值。你的答案被视为正确当且仅当与标准答案的绝对误差不超过1e-5

Sample Input

输入1:
4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3
输入2:
2 2
1 2 -2.9
2 1 -3.1

Sample Output

输出1:
3.666667
输出2:
-3.000000

Data Constraint

20%:n<=100,m<=1000
60%:  n<=1000 m<=5000
100%:  n<=3000 m<=10000
       abs(Wi,j)<=10^5
 
做法:分数规划,将求值问题变成可行性判断问题。 然后要利用深搜版的 SPFA/或者 dfs,用于判负环,来求可行性,如果是宽搜版的会被卡 T。
 #include <cstdio>
#include <cstring>
#include <iostream>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define fx(i,x) for(int i=ls[x];i;i=e[i].next)
#define fill(i,x) memset(i,x,sizeof(i))
#define M 10007
using namespace std;
const double eps=1e-;
double l=-M*,r=M*,mid;
double d[M];
int n,m,ls[M],tot;
struct edge{
int to,next;
double w;
}e[M];
bool judge,flag[M]; inline void Add(int x,int y,double z){
e[++tot].to=y;
e[tot].next=ls[x];
e[tot].w=z;
ls[x]=tot;
} inline void Spfa(int x){
flag[x]=;
fx(i,x){
int v=e[i].to;
if(d[x]+e[i].w-mid<d[v]){
if(flag[v]){
judge=;
return;
}
d[v]=d[x]+e[i].w-mid;
Spfa(v);
if(judge) return;
}
}
flag[x]=;
} inline bool Calc(){
fill(d,);
fill(flag,);
judge=;
rep(i,,n){
Spfa(i);
if (judge) return ;
}
return ;
} void Work(){
for(;l+eps<r;){
mid=(l+r)/;
if (Calc()) l=mid; else r=mid;
}
printf("%.6lf",l);
} void Init(){
scanf("%d%d",&n,&m);
rep(i,,m){
int u,v;
double w;
scanf("%d%d%lf",&u,&v,&w);
Add(u,v,w);
}
} int main(){
Init();
Work();
}

JZOJ 4735. 最小圈的更多相关文章

  1. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  2. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  3. [HNOI2009]最小圈

    题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除以k,现要求其中的最小值 输入输出格式 输入格式: 第一行2个正整数,分别为 ...

  4. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  5. [HNOI2009]最小圈 (二分答案+负环)

    题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...

  6. 【题解】 [HNOI2009] 最小圈 (01分数规划,二分答案,负环)

    题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除 ...

  7. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  8. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  9. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

随机推荐

  1. python学习一(Python中的列表)

    python中有两种列表,分别用()和[]表示: 例如: letter = ('a','b','c') letter = ['a','b','c'] 用小括号表示的列表初始化后不允许修改,而中中括号生 ...

  2. Asp.NetCore 2.2 WebApi 发布到IIS步骤及错误处理

    一.创建一个Asp.NetCore WebApi 程序(话不多说) 二.发布 三.配置IIS 程序池中选中网站的程序池 ——基本设置 浏览网站——浏览器 域名后面输入api/values 四.错误处理 ...

  3. 数据库查询SQL语句的时候如何写会效率更高?

    引言 以前刚开始做项目的时候,开发经验尚浅,遇到问题需求只要把结果查询出来就行,至于查询的效率可能就没有太多考虑,数据少的时候还好,数据一多,效率问题就显现出来了.每次遇到查询比较慢时,项目经理就会问 ...

  4. Java集合框架—List

    Collection |--List:元素是有序的,元素可以重复.因为该集合体系有索引. |--ArrayList:底层的数据结构使用的是数组结构.特点:查询速度很快.但是增删稍慢.线程不同步. |- ...

  5. Eucalyptus-利用镜像启动一个Windows Server 2008r2实例

    1.前言 使用kvm制作Eucalyptus镜像(Windows Server 2008r2为例)——http://www.cnblogs.com/gis-luq/p/3990792.html 上一篇 ...

  6. Error: unknown argument: '-websockets'

    参考原文:http://www.cocoachina.com/bbs/read.php?tid=194014 解决方法:点击项目右边编辑区域上面有一个building setting找到other l ...

  7. 《Python高效开发实战》实战演练——基本视图3

    在完成Django项目和应用的建立后,即可以开始编写网站应用代码,这里通过为注册页面显示一个欢迎标题,来演示Django的路由映射功能. 1)首先在djangosite/app/views.py中建立 ...

  8. [Java]在xp系统下java调用wmic命令获取窗口返回信息无反应(阻塞)的解决方案

    背景:本人写了一段java代码,调用cmd命令“wmic ...”来获取系统cpu.mem.handle等资源信息.在win7操作系统下运行没有问题,在xp系统下却发现读取窗口反馈信息时无反应(阻塞) ...

  9. pysnmp程序

    功能 访问远程交换机snmp数据,写入本地influxdb数据库 #!/usr/bin/env python # -*- encoding: utf-8 -*- import os, yaml, ti ...

  10. 企业常用的站内收索、QQ群、在线客服

    <div class="toplinks">            <form target="_blank">             ...