题意:一个n*m的方格矩阵,有的格子被涂成了黑色,问该矩阵中有多少个子矩阵,子矩阵不包含黑色格子;

思路:对于一个长为L, 高为H的无黑点矩阵中包含的高为H的子矩阵个数为L+(L-1)+(L-2)+...+1个;这是直接算的一种方法;如何程序表示该计算呢?

for(int i=; i<=L; i++){
for(int j=i; j>; j--){
count+=;
}
}

这样的一个双层循环就表示了上式;那么所有子矩阵个数就是三层循环,高由1->H:

for(int h=; h<=H; h++){
for(int i=; i<=L; i++){
for(int j=i; j>; j--){
count+=h;
}
}
} ​

这是其中没有黑点的;如果在某处加了个黑点又如何计算呢?如下图:

先看高为H(4)的子矩阵个数:以(4, 7)为右下角的高为H的子矩阵个数为3个,由L=4处在向左,就只能构成高为2的子矩阵了;

那么怎么该上边的代码才能得出答案呢?如下:

for(int i=; i<=H; i++){
for(int j=; j<=L; j++){
h=i;
for(int k=j; k>; k--){
h=min(h, i-p[k]);
count+=h;
}
}
}
//p[k]表示第k列中在i行上边的第一个黑点的位置,

上边代码就是本题的核心代码了;然后H用n代替,L用m代替,这样复杂度为O(n*m*m);然后标记黑点的位置每次维护h就可以了

#include<stdio.h>
#include<algorithm>
using namespace std;
int a[][],b[];
int main( )
{
int t , cas = ; scanf("%d",&t) ; while(t--)
{
cas++;
int n , m , id ;
scanf("%d%d%d",&n,&m,&id);
for(int i= ; i<=n ; i++)
for(int j= ; j<=m ; j++)
{
a[i][j]=;
b[j]=;
}
for(int i= ; i<id ; i++)
{
int x,y;
scanf("%d%d",&x,&y);
a[x][y]=;
}
long long ans = ;
for(int i= ; i<=n ; i++)
{
for(int j= ; j<=m ; j++)
{
if(a[i][j])
b[j]=i;
} for(int j= ; j<=m ; j++)
{
int MINX = 0x3f3f3f3f ;
for(int k=j ; k> ; k--)
{
MINX = min(MINX,(i-b[k]));
ans+=MINX;
}
}
}
printf("Case #%d: %lld\n",cas , ans); }
}

感谢

ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall (暴力)的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

  2. ACM-ICPC 2018 南京赛区网络预赛 B The writing on the wall(思维)

    https://nanti.jisuanke.com/t/30991 题意 一个n*m的方格矩阵,有的格子被涂成了黑色,问该矩阵中有多少个子矩阵,子矩阵不包含黑色格子. 分析 参考https://bl ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  4. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  5. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  6. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  7. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  8. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  9. ACM-ICPC 2018 南京赛区网络预赛

    轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K   Alice, a student of g ...

随机推荐

  1. 解决苹果手机Safari浏览器下 字体显示为 蓝色的 问题

    解决苹果手机 Safari浏览器下   字体显示为蓝色的 问题 近期测试同学测试,wap站上,底部文字在苹果8上面 ,使用 Safari浏览器打开,一直显示 蓝色字体 其他正常,寻找半天无解,最后 阳 ...

  2. Linux编程之错误代码

    头文件/usr/include/asm-generic/errno-base.h定义错误码: #ifndef _ASM_GENERIC_ERRNO_BASE_H #define _ASM_GENERI ...

  3. JQUERYUI 框架 http://jqueryui.com/

    http://jqueryui.com/

  4. Ubuntu下安装软件

    在ubuntu当中,安装应用程序有三种方法,分别是:apt-get,dpkg安装deb和make install安装源码包三种. apt-get方法 使用apt-get install来安装应用程序算 ...

  5. CentOS 7 配置 http 服务器

    一.http单域名访问 1.安装软件: yum -y install httpd 2.启动服务:systemctl  start httpd 3.设置开机启动: systemctl enable ht ...

  6. 115个Java面试题和答案

    面向对象编程(OOP) Java是一个支持并发.基于类和面向对象的计算机编程语言.下面列出了面向对象软件开发的优点: 代码开发模块化,更易维护和修改. 代码复用. 增强代码的可靠性和灵活性. 增加代码 ...

  7. [hdu1402]A * B Problem Plus(FFT模板题)

    解题关键:快速傅里叶变换fft练习. 关于结果多项式长度的确定,首先将短多项式扩展为长多项式,然后扩展为两倍. #include<cstdio> #include<cstring&g ...

  8. 18. CTF综合靶机渗透(十一)

    靶机描述: SkyDog Con CTF 2016 - Catch Me If You Can 难度:初学者/中级 说明:CTF是虚拟机,在虚拟箱中工作效果最好.下载OVA文件打开虚拟框,然后选择文件 ...

  9. hdu1088

    #include <stdio.h> #include <string.h> int main() { char s[10000]; int len; int cnt = 0; ...

  10. PHP获取原生POST数据

    To get the Raw Post Data: <?php $postdata = file_get_contents("php://input"); ?> 参考官 ...