题目链接  2016 BUAA-Final Problem B

考虑一对可行的点$(x, y)$

根据题意,设$x = ak + 1,y = bk + 1$

又因为$x$是$y$的祖先的祖先的祖先,所以$y = 8x + d, 0 <= d <= 7$;

那么代入到之前的那个式子

     $y = 8x + d$

        $= 8(ak + 1) + d = 8ak + d + 8$

注意到$8ak$对$k$取模后值为$0$,那么如果要满足题意,$d + 8$对$k$取模后值必须为$1$。

又因为$0 <= d <= 7$,所以$8 <= d + 8 <= 15$。

由此发现,当$k >= 15$时,无论$d$在取值范围内取什么值,都满足不了这个条件。

那么$k >= 15$时我们直接判无解。

根据同余的性质我们发现只需要关心根结点对$k$取模之后的值就行,

那么设$f[i][j][k]$为考虑根结点编号对$k$取模为$j$,模数为$k$,树的高度为$i$的时候这棵树的符合题意的点对数。

转移的时候从两个儿子那里获取信息,再加上自己的后代的后代的后代中符合题意的点的个数(前提是自己的编号对$k$取模也得为$1$)

那么状态数有$k^{2}n$个,用记忆化搜索实现就好了。

时间复杂度$O(k^{2}n)$

#include <cstdio>
#include <cstring>
#include <iostream> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second typedef long long LL; const int N = 5e4 + 10; const LL mod = 1e9 + 7; LL k, p;
LL f[N][16][16];
LL c[20][20];
int T;
int n; LL dp(int i, int j, int k){
if (~f[i][j][k]) return f[i][j][k];
if (i <= 3) return f[i][j][k] = 0; LL ret = 0;
ret += dp(i - 1, 2 * j % k, k); ret %= mod;
ret += dp(i - 1, (2 * j + 1) % k, k); ret %= mod;
if (j % k == 1){
ret += c[8 * j % k][k];
ret %= mod;
} return f[i][j][k] = ret;
} int main(){ memset(f, -1, sizeof f); rep(i, 0, 15){
rep(k, 1, 15){
rep(j, i, i + 7){
if (j % k == 1){
++c[i][k];
}
}
}
} scanf("%d", &T);
while (T--){
scanf("%lld%d%lld", &k, &n, &p);
if (k >= 15){
puts("0");
continue;
} p %= k;
printf("%lld\n", dp((int)n, (int)p, (int)k));
} return 0;
}

第十二届北航程序设计竞赛决赛网络同步赛 B题 前前前世(数论推导 + DP)的更多相关文章

  1. 第十二届北航程序设计竞赛决赛网络同步赛 J题 两点之间

    题目链接  Problem J 这道题思路还是很直观的,但是有两个难点: 1.题目中说$1<=NM<=10^{6}$,但没具体说明$N$和$M$的值,也就是可能出现: $N = 1, M ...

  2. 第十三届北航程序设计竞赛决赛网络同步赛 B题 校赛签到(建树 + 打标记)

    题目链接  校赛签到 对每个操作之间建立关系. 比较正常的是前$3$种操作,若第$i$个操作属于前$3$种,那么就从操作$i-1$向$i$连一条有向边. 比较特殊的是第$4$种操作,若第$i$个操作属 ...

  3. A. Srdce and Triangle--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    如下图这是“今日头条杯”首届湖北省大学程序设计竞赛的第一题,作为赛后补题 题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 Let  be a regualr tr ...

  4. “今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛 )--E. DoveCCL and Resistance

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 链接:https://www.nowcoder.com/acm/contest/104/D来源:牛客网 题目描述 ...

  5. I. Five Day Couple--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 链接:https://www.nowcoder.com/acm/contest/104/H来源:牛客网 题目描述 ...

  6. D. Who killed Cock Robin--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 题目描述 由于系统限制,C题无法在此评测,此题为现场赛的D题 Who killed Cock Robin? I, ...

  7. H. GSS and Simple Math Problem--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 题目描述 Given n positive integers , your task is to calculat ...

  8. 北京师范大学第十六届程序设计竞赛决赛 I 如何办好比赛

    链接:https://www.nowcoder.com/acm/contest/117/I来源:牛客网 如何办好比赛 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他 ...

  9. 北京师范大学第十六届程序设计竞赛决赛-重现赛-B题

    一.题目链接 https://www.nowcoder.com/acm/contest/117/B 二.题意 给定一组序列$a_1,a_2,\cdots,a_n$,表示初始序列$b_1,b_2,\cd ...

随机推荐

  1. react书写规范小记

    1.对齐方式 //如果没有属性,在自闭和标签前添加一个空格: <Footer /> //如果可以放在一行,放在一行上即可: <Footer bar="bar" / ...

  2. python学习笔记三:函数及变量作用域

    一.定义 def functionName([arg1,arg2,...]): code 二.示例 #!/usr/bin/python #coding:utf8 #coding=utf8 #encod ...

  3. SQL Server VALUES 使用一记住

    VALUES 用得最多,最常见的就是 INSER INOT 表名(列名1,列名2,......) VALUES(值1,值2,......) ------------------------------ ...

  4. 能ping通网络,也正常连接,就是打不开网页,无法访问网络

    netsh winsock reset命令,作用是重置 Winsock 目录.如果一台机器上的Winsock协议配置有问题的话将会导致网络连接等问题,就需要用netsh winsock reset命令 ...

  5. XML转译字符

    &(逻辑与) & <(小于) < >(大于) > "(双引号) " '(单引号) &apos; [/size]

  6. 【志银】Win764位配置Github环境及将代码部署到Github pages-志银强势总结

    (软件及教程下载分享:链接:http://pan.baidu.com/s/1dFysay9 密码:pug0) 1-安装Git-2.9.2-64-bit.exe(解压安装文件,运行安装程序,除了记得修改 ...

  7. 斐波那契数列的三种C++实现及时间复杂度分析

    本文介绍了斐波那契数列的三种C++实现并详细地分析了时间复杂度. 斐波那契数列定义:F(1)=1, F(2)=1, F(n)=F(n-1) + F(n-2) (n>2) 如何计算斐波那契数 F( ...

  8. STL之queue&stack使用简介

       queue 队列也是一个线性存储表,与后进先出的堆栈不同,元素数据的插入在表的一端进行,在另一端删除,从而构成了一个先进先出(First In First Out) 表.插入一端称为队尾,删除一 ...

  9. try...catch 语句

    一般情况下,我们很少用到 try...catch 语句,但是有时候为了测试代码中的错误,也有可能会用到.小白我也在工作中用到过.那么好的程序设计,什么时候会用到呢? try...catch 一般用来捕 ...

  10. LOJ #124. 除数函数求和 1

    题目描述 $\sigma_k(n) = \sum_{d | n} d ^ k$​ 求 $\sum_{i=1}^n\sigma_k(i)$ 的值对 109 取模的结果. 输入格式 第一行两个正整数 n, ...