题目链接  2016 BUAA-Final Problem B

考虑一对可行的点$(x, y)$

根据题意,设$x = ak + 1,y = bk + 1$

又因为$x$是$y$的祖先的祖先的祖先,所以$y = 8x + d, 0 <= d <= 7$;

那么代入到之前的那个式子

     $y = 8x + d$

        $= 8(ak + 1) + d = 8ak + d + 8$

注意到$8ak$对$k$取模后值为$0$,那么如果要满足题意,$d + 8$对$k$取模后值必须为$1$。

又因为$0 <= d <= 7$,所以$8 <= d + 8 <= 15$。

由此发现,当$k >= 15$时,无论$d$在取值范围内取什么值,都满足不了这个条件。

那么$k >= 15$时我们直接判无解。

根据同余的性质我们发现只需要关心根结点对$k$取模之后的值就行,

那么设$f[i][j][k]$为考虑根结点编号对$k$取模为$j$,模数为$k$,树的高度为$i$的时候这棵树的符合题意的点对数。

转移的时候从两个儿子那里获取信息,再加上自己的后代的后代的后代中符合题意的点的个数(前提是自己的编号对$k$取模也得为$1$)

那么状态数有$k^{2}n$个,用记忆化搜索实现就好了。

时间复杂度$O(k^{2}n)$

#include <cstdio>
#include <cstring>
#include <iostream> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second typedef long long LL; const int N = 5e4 + 10; const LL mod = 1e9 + 7; LL k, p;
LL f[N][16][16];
LL c[20][20];
int T;
int n; LL dp(int i, int j, int k){
if (~f[i][j][k]) return f[i][j][k];
if (i <= 3) return f[i][j][k] = 0; LL ret = 0;
ret += dp(i - 1, 2 * j % k, k); ret %= mod;
ret += dp(i - 1, (2 * j + 1) % k, k); ret %= mod;
if (j % k == 1){
ret += c[8 * j % k][k];
ret %= mod;
} return f[i][j][k] = ret;
} int main(){ memset(f, -1, sizeof f); rep(i, 0, 15){
rep(k, 1, 15){
rep(j, i, i + 7){
if (j % k == 1){
++c[i][k];
}
}
}
} scanf("%d", &T);
while (T--){
scanf("%lld%d%lld", &k, &n, &p);
if (k >= 15){
puts("0");
continue;
} p %= k;
printf("%lld\n", dp((int)n, (int)p, (int)k));
} return 0;
}

第十二届北航程序设计竞赛决赛网络同步赛 B题 前前前世(数论推导 + DP)的更多相关文章

  1. 第十二届北航程序设计竞赛决赛网络同步赛 J题 两点之间

    题目链接  Problem J 这道题思路还是很直观的,但是有两个难点: 1.题目中说$1<=NM<=10^{6}$,但没具体说明$N$和$M$的值,也就是可能出现: $N = 1, M ...

  2. 第十三届北航程序设计竞赛决赛网络同步赛 B题 校赛签到(建树 + 打标记)

    题目链接  校赛签到 对每个操作之间建立关系. 比较正常的是前$3$种操作,若第$i$个操作属于前$3$种,那么就从操作$i-1$向$i$连一条有向边. 比较特殊的是第$4$种操作,若第$i$个操作属 ...

  3. A. Srdce and Triangle--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    如下图这是“今日头条杯”首届湖北省大学程序设计竞赛的第一题,作为赛后补题 题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 Let  be a regualr tr ...

  4. “今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛 )--E. DoveCCL and Resistance

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 链接:https://www.nowcoder.com/acm/contest/104/D来源:牛客网 题目描述 ...

  5. I. Five Day Couple--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 链接:https://www.nowcoder.com/acm/contest/104/H来源:牛客网 题目描述 ...

  6. D. Who killed Cock Robin--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 题目描述 由于系统限制,C题无法在此评测,此题为现场赛的D题 Who killed Cock Robin? I, ...

  7. H. GSS and Simple Math Problem--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 题目描述 Given n positive integers , your task is to calculat ...

  8. 北京师范大学第十六届程序设计竞赛决赛 I 如何办好比赛

    链接:https://www.nowcoder.com/acm/contest/117/I来源:牛客网 如何办好比赛 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他 ...

  9. 北京师范大学第十六届程序设计竞赛决赛-重现赛-B题

    一.题目链接 https://www.nowcoder.com/acm/contest/117/B 二.题意 给定一组序列$a_1,a_2,\cdots,a_n$,表示初始序列$b_1,b_2,\cd ...

随机推荐

  1. 《Cracking the Coding Interview》——第13章:C和C++——题目3

    2014-04-25 19:42 题目:C++中虚函数的工作原理? 解法:虚函数表?细节呢?要是懂汇编我就能钻的再深点了.我试着写了点测大小.打印指针地址之类的代码,能起点管中窥豹的作用,从编译器的外 ...

  2. BInder浅析

    Binder是什么 Binder是运行在Android内核态用于进程间通信(IPC)的驱动,采用C/S架构,由三项基本组件组成:Binder服务端,Binder驱动,应用程序客户端. 为什么要用Bin ...

  3. jmeter察看结果树响应数据中文乱码解决办法

    1.到jmeter目录文件中bin文件夹下找到jmeter.properties文件,该文件为jmeter配置文件.使用编辑工具打开它. 2.找到    #sampleresult.default.e ...

  4. Bat 修改 xml 文件标签值

    xml 文件如下: <ConfigurationData> <ReportsFolder>\Reports</ReportsFolder> <Helpfold ...

  5. [C++] 拓展属性

    inline函数 函数重载 占位参数和默认参数 /*__________________________________________________________________ 背景: C++ ...

  6. Opencv2.4.13.6安装包

    这个资源是Opencv2.4.13.6安装包,包括Windows软件包,Android软件包,IOS软件包,还有opencv的源代码:需要的下载吧. 点击下载

  7. .NET Core Linux 部署实践

    部署环境:CentOS 7 x64 必要条件:当前用户有sudo权限 1. 安装依赖包sudo yum install libunwind libicu2. 下载.net core安装文件curl - ...

  8. CyclicBarrier和CountDownLatch的使用

    CyclicBarrier: api对CyclicBarrier的描述: 一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point).在涉及一组固定大 ...

  9. 软工实践 - 第十五次作业 Alpha 冲刺 (6/10)

    队名:起床一起肝活队 组长博客:https://www.cnblogs.com/dawnduck/p/10004469.html 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过 ...

  10. 【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终 ...