Storm概念学习系列之Storm与Hadoop的角色和组件比较
不多说,直接上干货!
Storm与Hadoop的角色和组件比较
Storm 集群和 Hadoop 集群表面上看很类似。但是 Hadoop 上运行的是 MapReduce 作业,而在 Storm 上运行的是拓扑 Topology,这两者之间是非常不同的。一个关键的区别是:一个MapReduce 作业最终会结束,而一个 Topology 拓扑会永远运行(除非手动杀掉)。表 1-1 列出了 Hadoop 与 Storm 的不同之处。

如果只用一个短语来描述 Storm,可能会是这样:分布式实时计算系统。按照 Storm作者的说法, Storm对于实时计算的意义类似于 Hadoop 对于批处理的意义。众所周知,根据Google MapReduce 来实现的 Hadoop 提供了 Map 和 Reduce 原语,使批处理程序变得非常简单和优美。那么 Storm 则是在批处理之前,及时处理了数据。
Storm 与其他大数据解决方案的不同之处在处理方式上。Hadoop 在本质上是一个批处理系统。数据被引入 HDFS 并分发到各个节点进行处理。当处理完成时,结果数据返回到HDFS 供始发者使用。 Storm 支持创建拓扑结构来转换没有终点的数据流。不同于 Hadoop 作业,这些转换从不停止,它们会持续处理到达的数据。
Hadoop 专注于批处理。这种模型对许多情形(如为网页建立索引)已经足够,但还存在其他一些使用模型,它们需要来自高度动态来源的实时信息。为了解决该问题,就得借助 Twitter 推出的 Storm。 Storm 不处理静态数据,但它处理预计会连续的流数据。考虑到Twitter 用户每天生成 1.4 亿条推文,很容易看到此技术的巨大用途。
Storm 不只是一个传统的大数据分析系统:它是复杂事件处理(CEP)系统的一个示例。CEP 系统通常分为计算和面向检测两类,其中每个系统都可通过用户定义的算法在 Storm 中实现。例如, CEP 可用于识别事件洪流中有意义的事件,然后实时处理这些事件。
Storm 作者 Nathan Marz 提供了在 Twitter 中使用 Storm 的大量示例。一个最有趣的示例是生成趋势信息。 Twitter 从海量的推文中提取所浮现的趋势,并在本地和国家级别维护这些趋势信息。这意味着当一个案例开始浮现时, Twitter 的趋势主题算法就会实时识别该主题。这种实时算法是使用 Storm 实现的基于 Twitter 数据的一种连续分析。

Storm概念学习系列之Storm与Hadoop的角色和组件比较的更多相关文章
- Storm概念学习系列之storm的雪崩
不多说,直接上干货! Storm的雪崩问题的解决办法1: Storm概念学习系列之并行度与如何提高storm的并行度 Storm的雪崩问题的解决办法2:
- Storm概念学习系列之storm流程图
把stream当做一列火车, tuple当做车厢,spout当做始发站,bolt当做是中间站点!!! 见 Storm概念学习系列之Spout数据源 Storm概念学习系列之Topology拓扑 Sto ...
- Storm概念学习系列之storm核心组件
不多说,直接上干货! Storm核心组件 了解 Storm 的核心组件对于理解 Storm 原理非常重要,下面介绍 Storm 的整体,然后介绍 Storm 的核心. Storm 集群由一个主节点和多 ...
- Storm概念学习系列之storm简介
不多说,直接上干货! storm简介 Storm 是 Twitter 开源的.分布式的.容错的实时计算系统,遵循 Eclipse Public License1.0. Storm 通过简单的 API ...
- Storm概念学习系列之storm的定时任务
不多说,直接上干货! 至于为什么,有storm的定时任务.这个很简单.但是,这个在工作中非常重要! 假设有如下的业务场景 这个spoult源源不断地发送数据,boilt呢会进行处理.然后呢,处理后的结 ...
- Storm概念学习系列之storm的可靠性
这个概念,对于理解storm很有必要. 1.worker进程死掉 worker是真实存在的.可以jps查看. 正是因为有了storm的可靠性,所以storm会重新启动一个新的worker进程. 2.s ...
- Storm概念学习系列之storm的特性
不多说,直接上干货! storm的特性 Storm 是一个开源的分布式实时计算系统,可以简单.可靠地处理大量的数据流. Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快 ...
- Storm概念学习系列之storm的功能和三大应用
不多说,直接上干货! storm的功能 Storm 有许多应用领域:实时分析.在线机器学习.持续计算.分布式 RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务). ETL(Extract ...
- Storm概念学习系列之storm的设计思想
不多说,直接上干货! storm的设计思想 在 Storm 中也有对流(Stream)的抽象,流是一个不间断的.无界的连续 Tuple(Storm在建模事件流时,把流中的事件抽象为 Tuple 即元组 ...
随机推荐
- HDOJ1024(最大M子段和)
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- mysql查询语句例题
1.一条SQL语句查询两表中两个字段 首先描述问题,student表中有字段startID,endID.garde表中的ID需要对应student表中的startID或者student表中的endID ...
- 杭电acm 1022题
Problem Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot o ...
- win7 32位安装 python 及Numpy、scipy、matplotlib函数包
操作系统: win7 64位,但选择安装32位的python. 1,python下载安装 https://www.python.org/downloads/ 下载2.7版,一路下一步安装. 并在pat ...
- Cannot uninstall 'enum34'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.
更新tensorflow时遇到报错 Found existing installation: enum34 1.0.4Cannot uninstall 'enum34'. It is a distut ...
- 使用Paramiko的问题
在使用Paramiko远程登录的时候,会报sudo: sorry, you must have a tty to run sudo 切换到root用户,使用visudo命令,然后就会打开一个文本,在文 ...
- How to install Samba server on Ubuntu 12.04
Part 1: Configuring anonymous share with samba server To install the samba package,enter the followi ...
- ubuntu14编译SSF(ethzasl_sensor_fusion )
参考:http://wiki.ros.org/ethzasl_sensor_fusion 1. cd catkin_ws/src/ 2 git clone git://github.com/ethz- ...
- 【Qt官方例程学习笔记】Getting Started Programming with Qt Widgets
创建一个QApplication对象,用于管理应用程序资源,它对于任何使用了Qt Widgets的程序都必要的.对于没有使用Qt Widgets 的GUI应用,可以使用QGuiApplication代 ...
- Sharepoint2013商务智能学习笔记之Excel Service展示Sql Server数据Demo(五)
第一步,打开Excel新建空白工作簿 第二步,使用Excel连接sql 数据库 第三步,画图 第四步 添加筛选器 最后效果如下: 第五步,将Excel上传到sharepoint任意文档库,并直接点击 ...