Codeforces 524 解题报告
打的很快乐的一次比赛hiahiahia, 才A掉4题rating就涨了100+
距离比赛\(3\)天了, 由于博主实在太颓, 又补掉了\(E\)题, 到现在才发解题报告
A.
语法题, 读入输出就行了
#include<cstdio>
#include<algorithm>
#include<iostream>
#define rd read()
#define ll long long
using namespace std;
int read() {
int X = 0, p = 1; char c = getchar();
for (; c > '9' || c < '0'; c = getchar())
if (c == '-') p = -1;
for (; c <= '9' && c >= '0'; c = getchar())
X = X * 10 + c - '0';
return X * p;
}
int main()
{
int n = rd, k = rd;
ll a = 2 * n, b = 5 * n, c = 8 * n, ans = 0;
ans = (a + k - 1) / k + (b + k - 1) / k + (c + k - 1) / k;
cout << ans << endl;
}
B.
把相邻两项放在一起, 多出的\(1\)项另外加上去
#include<cstdio>
#include<algorithm>
#define rd read()
using namespace std;
int read() {
int X = 0, p = 1; char c = getchar();
for (; c > '9' || c < '0'; c = getchar())
if (c == '-') p = -1;
for (; c <= '9' && c >= '0'; c = getchar())
X = X * 10 + c - '0';
return X * p;
}
int main()
{
int n = rd;
for (; n; --n) {
int l = rd, r = rd, ans = 0;
if ((r - l + 1) % 2 == 0) printf("%d\n", (l & 1 ? 1 : -1) * (r - l + 1) / 2);
else {
ans = (l & 1 ? 1 : -1) * (r - l) / 2;
ans += (r & 1 ? -1 : 1) * r;
printf("%d\n", ans);
}
}
}
C.
简单的容斥
白色和黑色是交替出现的
一个\(w \times h\) 的矩阵, 如果 \(w \times h\) 为奇数, 则左下角的颜色会比另外一种颜色多出\(1\)个
接下来是计算方法, 算出的 黑色 或 白色 的个数表示 泼墨水之前的矩阵
泼白墨水时, 算出 \((x1, y1), (x2, y2)\) 这个矩阵内有多少个黑色方块, 并更新入答案
泼黑墨水时, 算出 \((x3, y3), (x4, y4)\) 这个矩阵内有多少个白色方块, 并更新入答案
这时我们发现两次泼墨水的范围会有交集, 这个相交的矩阵为 \((x5, y5), (x6, y6)\)
这个相交的矩阵内 第二次泼墨只记入了 白色方块的贡献, 而没有记入黑色方块的贡献(黑色方块在第一次泼墨时被染成了白色)
所以只需要把 这个矩阵内的 黑色方块的个数 加入黑色方块的总数即可
枚举横纵坐标就可以找到相交矩阵
下代码计算矩阵内某种颜色的方块数用一个函数可以解决, 我打麻烦了QAQ
#include<cstdio>
#include<algorithm>
#include<iostream>
#define rd read()
#define ll long long
using namespace std;
typedef pair<ll, ll> P;
ll n, m, numw, numb;
ll lsx[10], lsy[10], cntx, cnty;
const ll inf = 1e9 + 7;
ll read() {
ll X = 0, p = 1; char c = getchar();
for (; c > '9' || c < '0'; c = getchar())
if (c == '-') p = -1;
for (; c <= '9' && c >= '0'; c = getchar())
X = X * 10 + c - '0';
return X * p;
}
#define X first
#define Y second
void in(P &tmp) {
tmp.X = rd; tmp.Y = rd;
lsx[++cntx] = tmp.X;
lsy[++cnty] = tmp.Y;
}
int jud(ll x, ll y, P tmp1, P tmp2, P tmp3, P tmp4) {
if (x < tmp1.X || x > tmp2.X) return 0;
if (x < tmp3.X || x > tmp4.X) return 0;
if (y < tmp1.Y || y > tmp2.Y) return 0;
if (y < tmp3.Y || y > tmp4.Y) return 0;
return 1;
}
void up(P &a, P b) {
if (a < b) a = b;
}
void down(P &a, P b) {
if (a > b) a = b;
}
void cal() {
P tmp1, tmp2, tmp3, tmp4;
in(tmp1); in(tmp2); in(tmp3); in(tmp4);
ll dx = tmp2.X - tmp1.X + 1, dy = tmp2.Y - tmp1.Y + 1;
if ((dx * dy) % 2 && (tmp1.X + tmp1.Y) % 2) {
numb -= dx * dy - dx * dy / 2;
numw += dx * dy - dx * dy / 2;
} else numb -= dx * dy / 2,
numw += dx * dy / 2;
dx = tmp4.X - tmp3.X + 1, dy = tmp4.Y - tmp3.Y + 1;
if ((dx * dy) % 2 && (tmp3.X + tmp3.Y) % 2 == 0) {
numw -= dx * dy - dx * dy / 2;
numb += dx * dy - dx * dy / 2;
} else numw -= dx * dy / 2,
numb += dx * dy / 2;
P tmp5 = P(inf, inf), tmp6 = P(0, 0);
for (int i = 1; i <= 4; ++i)
for (int j = 1; j <= 4; ++j) if (jud(lsx[i], lsy[j], tmp1, tmp2, tmp3, tmp4)) {
down(tmp5, P(lsx[i], lsy[j])),
up(tmp6, P(lsx[i], lsy[j]));
}
if (tmp6.X == 0) return;
dx = tmp6.X - tmp5.X + 1, dy = tmp6.Y - tmp5.Y + 1;
if ((dx * dy) % 2 && (tmp5.X + tmp5.Y) % 2) {
numw -= dx * dy - dx * dy / 2;
numb += dx * dy - dx * dy / 2;
} else numw -= dx * dy / 2,
numb += dx * dy / 2;
}
#undef x
#undef y
int main()
{
int T = rd;
for (; T; T--) {
cntx = cnty = 0;
n = rd; m = rd;// y <= n && x <= m (x, y)
numb = n * m / 2;
numw = n * m - numb;
cal();
cout << numw << " " << numb <<endl;
}
}
D.
枚举+数列计算?
\(a_n=(4^n-1) \div 3\) 表示边长为 \(2^n\) 的矩阵分裂成 \(1 \times 1\) 的矩阵需要的操作数。 高中的数列知识应该算的很快
然后枚举 路径上的矩阵的边长为 \(2^{n-a} \ (a=1...n)\) , 至少要 \(2^a - 1\) 次操作才能造出存在这样的路径,
则左边界\(L=2^a-1\), 然后我们需要算出右边界\(R\),并判断\(k\) 是否在 \([L, R]\) 内。
把除掉这条路径上的 所有矩阵都分裂成 \(1 \times 1\) 的矩阵 就能算出 \(R\)
另外 \(R\) 的值会爆\(LL\), 所以我用了 \(long \ double\) QuQ
#include<cstdio>
#include<algorithm>
#include<iostream>
#define ll long long
#define rd read()
#define lb long double
using namespace std;
const ll inf = 1e9 + 7;
ll n, k;
ll read() {
ll X = 0, p = 1; char c = getchar();
for (; c > '9' || c < '0'; c = getchar())
if (c == '-') p = -1;
for (; c >= '0' && c <= '9'; c = getchar())
X = X * 10 + c - '0';
return X * p;
}
lb fpow(lb a, ll b) {
lb res = 1;
for (; b; b >>= 1, a = a * a)
if (b & 1) res = res * a;
return res;
}
int cal() {
lb tmp1 = 0, tmp2 = 0, fac = 2;
for (int i = 1; i <= n && i <= 50; ++i) {
tmp1 += fac - 1;
tmp2 += (2 * (fac - 1) - 1) * (fpow(4, n - i) - 1) / 3;
if (tmp1 <= k && k <= tmp1 + tmp2) return n - i;
if (tmp1 > k) return inf;
fac *= 2;
}
return inf;
}
int main()
{
int T = rd;
for (; T; T--) {
n = rd; k = rd;
int res = cal();
if (res == inf) puts("NO");
else printf("YES %d\n", res);
}
}
E.
manacher算法
一个矩阵满足条件, 必须使
- 在每一行中, 出现次数为奇数的字符数 \(<=1\)
- 对应两行每种字符的个数相同
然后枚举列,把每一行看成一个字符, 进行manacher算出回文串的个数即可
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define ll long long
using namespace std;
typedef bitset<28> BT;
const int N = 260;
int n, m, cnt[N * 2][N][27], len[N << 1], odd[N << 1];
BT num[N << 1][N];
char s[N][N];
int cmp(int L, int R, int x, int y) {
if (odd[x] > 1 || odd[y] > 1) return 0;
for (int k = 1; k <= 26; ++k)
if (cnt[x][R][k] - cnt[x][L - 1][k] != cnt[y][R][k] - cnt[y][L - 1][k]) return 0;
return 1;
}
int cal(int l, int r) {
len[1] = 1; int pos = 1, R = 1;
int res = 0;
for (int i = 2; i <= 2 * n + 1; ++i) {
if (i <= R) {
if (len[2 * pos - i] < R - i + 1) len[i] = len[2 * pos - i];
else {
len[i] = R - i + 1;
while (i + len[i] <= 2 * n + 1 && i - len[i] && cmp(l, r, i + len[i], i - len[i]))
R++, len[i]++, pos = i;
}
} else {
len[i] = 1;
while (i + len[i] <= 2 * n + 1 && i - len[i] && cmp(l, r, i + len[i], i - len[i]))
R++, len[i]++, pos = i;
}
if (odd[i] <= 1) res += len[i] / 2;
}
// printf("%d\n", res);
return res;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i)
scanf("%s", s[i] + 1);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j) {
for (int k = 1; k <= 26; ++k)
cnt[i << 1][j][k] = cnt[i << 1][j - 1][k];
cnt[i << 1][j][s[i][j] - 'a' + 1]++;
BT tmp; tmp.set(s[i][j] - 'a' + 1);
num[i << 1][j] = num[i << 1][j - 1] ^ tmp;
}
int ans = 0;
for (int i = 1; i <= m; ++i)
for (int j = 1; j <= i; ++j) {
BT tmp;
for (int k = 1; k <= n; ++k) {
tmp = num[k << 1][j - 1] ^ num[k << 1][i];
odd[k << 1] = tmp.count();
}
// printf("%d %d :", j, i);
ans += cal(j, i);
}
printf("%d\n", ans);
}
Codeforces 524 解题报告的更多相关文章
- codeforces 714C解题报告
http://codeforces.com/contest/714/problem/C #include <bits/stdc++.h>//非递归形式建立字典树 using namespa ...
- codeforces#254DIV2解题报告
今天简直大爆发啊... 吃了顿烧烤竟然这么管事. . . .. 本弱渣竟然做出来了3道,并且B题是我第一次在CF中用到算法..(曾经最多也就是贪心. . . ). 题目地址:codeforces#22 ...
- Codeforces 652F 解题报告
题意 有n只蚂蚁在长度为m个格子的环上,环上的格子以逆时针编号,每只蚂蚁每秒往它面向的方向移动一格.如果有两只蚂蚁相撞则相互调换方向,问t秒后每只蚂蚁的位置. 题解 首先通过观察可以发现 蚂蚁相撞产生 ...
- codeforces 476C.Dreamoon and Sums 解题报告
题目链接:http://codeforces.com/problemset/problem/476/C 题目意思:给出两个数:a 和 b,要求算出 (x/b) / (x%b) == k,其中 k 的取 ...
- Codeforces Round #378 (Div. 2) D题(data structure)解题报告
题目地址 先简单的总结一下这次CF,前两道题非常的水,可是第一题又是因为自己想的不够周到而被Hack了一次(或许也应该感谢这个hack我的人,使我没有最后在赛后测试中WA).做到C题时看到题目情况非常 ...
- Codeforces Round 665 赛后解题报告(暂A-D)
Codeforces Round 665 赛后解题报告 A. Distance and Axis 我们设 \(B\) 点 坐标为 \(x(x\leq n)\).由题意我们知道 \[\mid(n-x)- ...
- Codeforces Round 662 赛后解题报告(A-E2)
Codeforces Round 662 赛后解题报告 梦幻开局到1400+的悲惨故事 A. Rainbow Dash, Fluttershy and Chess Coloring 这个题很简单,我们 ...
- Codeforces Educational Round 92 赛后解题报告(A-G)
Codeforces Educational Round 92 赛后解题报告 惨 huayucaiji 惨 A. LCM Problem 赛前:A题嘛,总归简单的咯 赛后:A题这种**题居然想了20m ...
- Codeforces Round #382 (Div. 2) 解题报告
CF一如既往在深夜举行,我也一如既往在周三上午的C++课上进行了virtual participation.这次div2的题目除了E题都水的一塌糊涂,参赛时的E题最后也没有几个参赛者AC,排名又成为了 ...
随机推荐
- iOS如何转换十三位的时间戳
//将十三位的时间戳转换为日期 - (NSString *)getDate:(NSString *)jsonDate { //jsonDate类似这种/Date(1447659630000)/ NSA ...
- reg 和wire 区别
reg相当于存储单元,wire相当于物理连线 Verilog 中变量的物理数据分为线型和寄存器型.这两种类型的变量在定义时要设置位宽,缺省为1位.变量的每一位可以是0,1,X,Z.其中x代表一个未被预 ...
- c#控件 menuStrip(转)
一.概述 菜单通过存放按照一般主题分组的命令将功能公开给用户. MenuStrip 控件是此版本的 Visual Studio 和 .NET Framework 中的新功能.使用该控件,可以轻松创建 ...
- 模块(modue)和包(package)的概念-import导入模块
模块 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较 ...
- [TensorFlow]TensorFlow安装方法
下载*.whl文件方法安装: 方法:http://www.python36.com/install-tensorflow-using-official-pip-pacakage/ 在线安装: 方法:h ...
- javaScript:压缩图片并上传
html代码: <input id="file" type="file" name="filesName"> js代码: var ...
- JavaScript学习-5——异步同步、回调函数
----------异步同步函数 ----------回调函数 一.异步同步函数 同步:发送一个请求,等待返回,然后再发送下一个请求 异步:发送一个请求,不等待返回,随时可以再发送下一个请求 同步可以 ...
- ubuntu 外接显示器
xrandr --help xrandr # 列出显示器 sudo xrandr --output eDP-1 --off # 关闭eDP-1显示器 sudo xrandr --output ...
- python学习 生成随机函数 random模块的用法
random模块是用于生成随机数 常用函数 函数 含义 random() 生成一个[0,1.0)之间的随机浮点数 uniform(a,b) 生成一个a到b之间的随机浮点数 randint(a,b) 生 ...
- Linux发行版:CentOS、Ubuntu、RedHat、Android、Tizen、MeeGo
Linux,最早由Linus Benedict Torvalds在1991年开始编写.在这之前,Richard Stallman创建了Free Software Foundation(FSF)组织以及 ...