51nod--1264 线段相交 (计算几何基础, 二维)
题目:
1264 线段相交
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注
给出平面上两条线段的两个端点,判断这两条线段是否相交(有一个公共点或有部分重合认为相交)。 如果相交,输出”Yes”,否则输出”No”。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
第2 - T + 1行:每行8个数,x1,y1,x2,y2,x3,y3,x4,y4。(-10^8 <= xi, yi <= 10^8)
(直线1的两个端点为x1,y1 | x2, y2,直线2的两个端点为x3,y3 | x4, y4)
Output
输出共T行,如果相交输出”Yes”,否则输出”No”。
Input示例
2
1 2 2 1 0 0 2 2
-1 1 1 1 0 0 1 -1
Output示例
Yes
No
分析:
在二维中, 对于两个线段相交, 不包括重叠, 端点可以用向量的叉积来判断,
部分重叠, 则说明必有一个点在另一条线段上(不包括端点), 则叉积为0, 点积是 < 0 的;
对于端点重叠的, 判断一下点是否相等就可以了。
实现:
#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
int dcmp(double x) {
return fabs(x) < eps ? 0 : (x < 0 ? -1 : 1);
}
struct Point {
double x, y;
Point(double _x = 0, double _y = 0) :\
x(_x), y(_y) {}
};
typedef Point Vector;
Vector operator - (Point A, Point B) { return Vector (A.x-B.x, A.y-B.y); }
bool operator == (Point A, Point B) { return dcmp(A.x-B.x) == 0 && dcmp(A.y-B.y) == 0; }
double Dot (Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Cross (Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { ///不包括端点的两线段相交。
double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1),
c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1);
return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
}
bool PointOnSegment(Point p, Point a1, Point a2) { /// 判断点是否在线段上。
return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p,a2-p)) < 0;
}
Point d[4];
int main()
{
int T;
cin >> T;
while(T--) {
for(int i = 0; i < 4; ++i)
cin >> d[i].x >> d[i].y;
int cnt = 0;
cnt += (d[0] == d[2] || d[1] == d[3] || d[0] == d[3] || d[1] == d[2]);
cnt += (PointOnSegment(d[0],d[2],d[3]) || PointOnSegment(d[1],d[2],d[3]));
cnt += SegmentProperIntersection(d[0],d[1],d[2],d[3]);
if(cnt) printf("Yes\n");
else printf("No\n");
}
}
51nod--1264 线段相交 (计算几何基础, 二维)的更多相关文章
- 51nod 1264 线段相交(几何)
题目链接:51nod 1264 线段相交 如果两条线段相交,则需满足一条线段的一个端点在另一条线段上,或者 两条线段都分别跨越另一条线段延伸的直线上.(如果点p1位于直线p3p4的一边,而点p2位于该 ...
- 51Nod 1264 线段相交(计算几何)
1264 线段相交 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出平面上两条线段的两个端点,判断这两条线段是否相交(有一个公共点或有部分重合认为相 ...
- 判断线段相交 -- 51nod 1264 线段相交
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1264 三角形的有向面积:a.x*b.y+b.x*c.y+c.x*a.y ...
- 51nod 1264 线段相交——计算几何
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1264 检查点的位置就行了,具体见注释. /* (a-c)×(d-c)*(d ...
- 51nod 1264 线段相交
题目:传送门. 题意:给两条线段,有一个公共点或有部分重合认为相交,问他们是否相交. 题解:这属于非规范相交的情况,模板题. #include <iostream> #include &l ...
- (图论)51NOD 1264 线段相交
给出平面上两条线段的两个端点,判断这两条线段是否相交(有一个公共点或有部分重合认为相交). 如果相交,输出"Yes",否则输出"No". 输入 第1行:一个 ...
- OpenJudge计算概论-二维数组右上左下遍历
/*====================================================================== 二维数组右上左下遍历 总时间限制: 1000ms 内存 ...
- 算法模板——线段树6(二维线段树:区域加法+区域求和)(求助phile)
实现功能——对于一个N×M的方格,1:输入一个区域,将此区域全部值作加法:2:输入一个区域,求此区域全部值的和 其实和一维线段树同理,只是不知道为什么速度比想象的慢那么多,求解释...@acphile ...
- CodeForces 242E - XOR on Segment 二维线段树?
今天练习赛的题....又是线段树的变换..拿到题我就敲了个点更新区间查询的..果断超时...然后想到了可以将每个数与合表示成不进位的二进制数..这样就可以区间进行更新了..比赛的时候写搓了..刚重写了 ...
随机推荐
- Noisy Channel模型纠正单词拼写错误
本文介绍 Stanford<From Languages to Information>课程中讲到的 单词拼写错误 纠正.背后的数学原理主要是贝叶斯公式.单词拼写错误纠正主要涉及到两个模型 ...
- Android允许在UI线程中使用网络访问
StrictMode.ThreadPolicy policy=new StrictMode.ThreadPolicy.Builder().permitAll().build(); StrictMode ...
- VS2010显示行号
选项->文本编辑器->如果使用C#开发选择C#->勾选行号->确定
- php与java通用AES加密解密算法
AES指高级加密标准(Advanced Encryption Standard),是当前最流行的一种密码算法,在web应用开发,特别是对外提供接口时经常会用到,下面是我整理的一套php与java通用的 ...
- 【C++】reference parameter-引用参数
1.reference parameter 以下两个函数等效,只调用方式不同: 1> 1 int reset(int i){ 2 i = 13; 3 return i; 4 } 5 6 int ...
- Windows打开文件
cmd中, windows 打开文件命令:start: Linux 打开文件命令:open
- Vue Router学习笔记
前端的路由:一个地址对应一个组件 Vue Router中文文档 一.路由基本使用 第1步:导入Vue Router: <script src="https://unpkg.com/vu ...
- luogu P3241 [HNOI2015]开店
传送门 (下面记年龄为\(a_x\))题目要求的是\[\sum_{x=1}^{n} [a_x\in [l,r]]*dis(x,u)=\sum_{x=1}^{n} [a_x\in [l,r]]*de_x ...
- 03-13_static关键字
static主要作用 常见定义结构:public static void main(): static关键字可以用于定义属性及方法: static定义属性 在一个类之中,主要的组成就是属性和方法(分为 ...
- python 的基础 学习 11天 作业题
1.整理函数相关知识点,写博客 2.写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者. def func1(argv): li = [] for i in r ...