「ZJOI2016」大森林

神仙题...

很显然线段树搞不了

考虑离线操作

我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试

显然操作0,1都可以拆成差分的形式,就是加入和删除

因为保证了操作2的合法性,我们不妨先不计合法性把所有点加到树中

显然每个点要连到在这个点之前的离这个点时间上最近那个1操作的点上

然后可以发现移动时1操作相当于很多个点换根

我们可以对每个1操作建一个虚点,然后就可以很方便换根了

那么如何保证查询操作呢?

可以把每个1操作的虚点大小设成0(代表它父亲边的直接长度),并按时间串起来。

这样,一个虚点的虚点儿子的子树的点其实也是它的子树了,查询的时候差dis[u]+dis[v]-dis[lca]*2就可以了

是不是以为这个0操作的区间限制就没有用了?

其实不是,注意到1操作的点可能还没出现...这时候就要把1操作删掉


Code:

#include <cstdio>
#include <cctype>
#include <algorithm>
using std::min;
using std::max;
const int N=3e5+10;
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
int ans[N],n,m,_n,_m,q,p[N],node,ti[N],tot,L[N],R[N];
struct koito_yuu
{
int pos,op,u,v;
koito_yuu(){}
koito_yuu(int Pos,int Op,int U,int V){pos=Pos,op=Op,u=U,v=V;}
bool friend operator <(koito_yuu a,koito_yuu b){return a.pos==b.pos?a.op<b.op:a.pos<b.pos;}
}yuu[N];
#define ls ch[now][0]
#define rs ch[now][1]
#define fa par[now]
int sum[N],ch[N][2],par[N],siz[N];
bool isroot(int now){return ch[fa][0]==now||ch[fa][1]==now;}
int identity(int now){return ch[fa][1]==now;}
void connect(int f,int now,int typ){ch[fa=f][typ]=now;}
void updata(int now){sum[now]=sum[ls]+sum[rs]+siz[now];}
void Rotate(int now)
{
int p=fa,typ=identity(now);
connect(p,ch[now][typ^1],typ);
if(isroot(p)) connect(par[p],now,identity(p));
else fa=par[p];
connect(now,p,typ^1);
updata(p),updata(now);
}
void splay(int now)
{
for(;isroot(now);Rotate(now))
if(isroot(fa))
Rotate(identity(now)^identity(fa)?now:fa);
}
int access(int now)
{
int las=0;
for(;now;las=now,now=fa) splay(now),rs=las,updata(now);
return las;
}
int LCA(int x,int y)
{
access(x);
return access(y);
}
void link(int x,int y)
{
access(x),splay(x);
par[x]=y;
}
void cat(int x)
{
access(x),splay(x);
par[ch[x][0]]=0;
ch[x][0]=0;
}
int qry(int x)
{
access(x),splay(x);
return sum[x];
}
int query(int x,int y)
{
int lca=LCA(x,y);
return qry(x)+qry(y)-(qry(lca)<<1);
}
int main()
{
read(n),read(m);
L[1]=1,R[1]=n,node=1,++tot;
for(int op,l,r,x,u,v,i=1;i<=m;i++)
{
read(op);
if(op==0) ++node,read(L[node]),read(R[node]),p[node]=i;
else if(op==1)
{
ti[++tot]=i;
link(tot,tot-1);
read(l),read(r),read(x);
l=max(L[x],l),r=min(R[x],r);
if(l>r) continue;
yuu[++q]=koito_yuu(l,-1,x,tot);
yuu[++q]=koito_yuu(r+1,0,x,tot);
}
else
{
read(x),read(u),read(v);
yuu[++q]=koito_yuu(x,++_n,u,v);
}
}
_m=tot;
for(int i=2;i<=node;i++)
{
int pos=std::upper_bound(ti+1,ti+1+_m,p[i])-ti-1;
siz[++tot]=1,sum[tot]=1;
link(tot,pos);
}
std::sort(yuu+1,yuu+1+q);
for(int j=1,i=1;i<=n;i++)
{
while(yuu[j].pos==i)
{
int u=yuu[j].u+_m-1,v=yuu[j].v;
if(u==_m) u=1;
if(yuu[j].op==-1)
{
cat(v);
link(v,u);
}
else if(yuu[j].op==0)
{
cat(v);
link(v,v-1);
}
else ans[yuu[j].op]=query(u,v==1?1:v+_m-1);
++j;
}
}
for(int i=1;i<=_n;i++) printf("%d\n",ans[i]);
return 0;
}

2019.3.11

「ZJOI2016」大森林 解题报告的更多相关文章

  1. @loj - 2092@ 「ZJOI2016」大森林

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Y 家里有一个大森林,里面有 n 棵树,编号从 1 到 n. ...

  2. loj2092 「ZJOI2016」大森林

    ref不是太懂-- #include <algorithm> #include <iostream> #include <cstring> #include < ...

  3. 「THUSCH 2017」大魔法师 解题报告

    「THUSCH 2017」大魔法师 狗体面太长,帖链接了 思路,维护一个\(1\times 4\)的答案向量表示\(A,B,C,len\),最后一个表示线段树上区间长度,然后每次的操作都有一个转移矩阵 ...

  4. 「JLOI2015」管道连接 解题报告

    「JLOI2015」管道连接 先按照斯坦纳树求一个 然后合并成斯坦纳森林 直接枚举树的集合再dp一下就好了 Code: #include <cstdio> #include <cct ...

  5. 「NOI2017」蚯蚓排队 解题报告

    「NOI2017」蚯蚓排队 这题真的草 你考虑\(k\)这么小,每次合并两个串,增加的有用串的数量是\(O(k^2)\)的,暴力加入这些串,求一下这些串的Hash值,塞到Hash表里面去 这里采用类似 ...

  6. 「FJOI2016」神秘数 解题报告

    「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...

  7. 「SCOI2016」背单词 解题报告

    「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...

  8. 「NOI2015」寿司晚宴 解题报告

    「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现 ...

  9. 「SCOI2015」国旗计划 解题报告

    「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿 ...

随机推荐

  1. 一个出色的表格(React实现__ES5语法)

    本文主要是<React快速上手开发>一书中,第三章的内容代码整理,因为书中的代码零零散散,所以自己将整理了一下. 排序和编辑功能 <script> var header = [ ...

  2. Linux&Windows中VNC协议及使用方法

    [转载]window下使用vnc远程登录ubuntu/linux图形界面_五个粽子_新浪博客http://blog.sina.com.cn/s/blog_677265f601012mqg.html V ...

  3. Python3练习题 011:成绩打分

    # print('-----判断输入值和60大小判断')# b=int(input('input num'))# if b >60:# print('良')# elif b==60:# prin ...

  4. spring aop学习记录

    许多AOP框架,比较常用的是Spring AOP 与AspectJ.这里主要学习的Spring AOP. 关于AOP 日志.事务.安全验证这些通用的.散步在系统各处的需要在实现业务逻辑时关注的事情称为 ...

  5. C#的修饰符

    C#的修饰符 废话少说,直接上总结: 一.在命名空间下: 类:默认修饰符为internal 接口:默认的修饰符为internal 结构体:默认的修饰符为internal 枚举:默认的修饰符为inter ...

  6. ES6/ES2015的一些特性的简单使

    1.一些常用的ES6的特性: let, const, class, extends, super, arrow functions, template string, destructuring, d ...

  7. javap -v没有显示LocalVaribleTable

    时隔多日,终于找到为什么javap -v .class文件没有LocalVariableTable出现 因为默认的javac编译没有生成相关的调试信息,这里我们可以通过javac -help查看指令帮 ...

  8. drf开发中常见问题

    开发常见问题及解决 问题: 一.本地系统不能重现的bug 二.api接口出错不能及时的发现或难找到错误栈 三.api文档管理问题 四.大量的url配置造成url配置越来越多难以维护 五.接口不及时去更 ...

  9. ansible的playbook简单使用

    一.介绍 playbook就是一个用yaml语法把多个模块堆起来的一个文件 核心组件: Hosts:执行的远程主机列表Tasks:任务,由模块定义的操作的列表:Varniables:内置变量或自定义变 ...

  10. ASP.NET4.0所有网页指令

    ASP.NET网页指令(Page Directive)就是在网页开头的标签声明: <% Page Language="C#" %> 而指令的作用在于指定网页和用户控件编 ...