洛谷P3258 松鼠的新家
树上差分
这应该是一道很简单的树上差分了。。就是问每个点被覆盖了多少次。
要注意我们最后dfs后,要把除第一个节点以外的所有点的-1,因为有些点作为起点和终点覆盖了两次,按照题目意思是不用覆盖两次的。
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 300005;
int n, s[N], cnt, head[N], depth[N], p[N][20], t, val[N];
bool vis[N];
struct Edge { int v, next; }edge[N<<1];
void addEdge(int a, int b){
edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
}
void dfs(int s, int fa){
depth[s] = depth[fa] + 1;
p[s][0] = fa;
for(int i = 1; i <= t; i ++){
p[s][i] = p[p[s][i - 1]][i - 1];
}
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa) continue;
dfs(u, s);
}
}
int lca(int x, int y){
if(depth[x] < depth[y]) swap(x, y);
for(int i = t; i >= 0; i --){
if(depth[p[x][i]] >= depth[y]) x = p[x][i];
}
if(x == y) return y;
for(int i = t; i >= 0; i --){
if(p[x][i] != p[y][i]) x = p[x][i], y = p[y][i];
}
return p[y][0];
}
void dfs(int s){
vis[s] = true;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(vis[u]) continue;
dfs(u);
val[s] += val[u];
}
}
int main(){
full(head, -1);
n = read();
for(int i = 0; i < n; i ++) s[i] = read();
for(int i = 0; i < n - 1; i ++){
int u = read(), v = read();
addEdge(u, v), addEdge(v, u);
}
t = (int)(log(n) / log(2)) + 1;
dfs(s[0], 0);
for(int i = 0; i < n - 1; i ++){
val[s[i]] ++, val[s[i + 1]] ++;
int f = lca(s[i], s[i + 1]);
val[f] --, val[p[f][0]] --;
}
dfs(s[0]);
for(int i = 1; i < n; i ++) val[s[i]] --;
for(int i = 1; i <= n; i ++) printf("%d\n", val[i]);
return 0;
}
洛谷P3258 松鼠的新家的更多相关文章
- 洛谷 P3258 松鼠的新家 题解
题面 貌似这道题暴力加玄学优化就可以AC? 下面是正解: 1.树链剖分: 我们在u到v之间都放一个糖果,可以将松鼠它家u到v的糖果数都加1.每一次将a[i]到a[i+1] (a数组是访问顺序)的节点加 ...
- 洛谷 [P3258] 松鼠的新家
树上差分 对于一条路径 \(u->v\) 来说,设 \(t=LCA(u,v)\) ,d[]为差分数组 ,则有 d[u]++;d[v]++;d[t]--;d[fa[t]]--; 注意:题目中所给的 ...
- 洛谷P3258松鼠的新家
题目传送门 恩,很明显的一个树剖题,配合树上差分其实也并不难,不过无奈蒟蒻树剖还没那么熟练,而且树上差分也做的少,所以这题愣是做了一中午......唉,果然我还是太菜了.恩,具体做法在代码中解释吧: ...
- P3258 松鼠的新家
松鼠的新家 洛谷链接 尽管标签是省选/NOI-,但提交的通过率已经高到三分之一了. 但它仍旧是一个省选/NOI-的题. 大致题意就是按输入的顺序走一棵树,看每个节点经过多少次.问题就相当于把一条链上的 ...
- 【题解】P3258松鼠的新家
[题解][P3258 JLOI2014]松鼠的新家 树链剖分板子题. 总结一点容易写错的地方吧: if(d[top[u]]<d[top[v]]) swap(u,v);注意是\(top\). 在\ ...
- Luogu P3258 松鼠的新家(树链剖分+线段树/树状数组)
题面 题解 这种题目一看就是重链剖分裸题,还是区间修改,单点查询,查询之前在遍历时要记一个\(delta\),因为这一次的起点就是上一次的终点,不需要放糖,所以可以用\(BIT\)来写,但我写完\(m ...
- BZOJ3631:[JLOI2014]松鼠的新家——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=3631 https://www.luogu.org/problemnew/show/P3258 松鼠的 ...
- 洛谷 P3258 BZOJ 3631 [JLOI2014]松鼠的新家
题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前 ...
- 洛谷 P3258 [JLOI2014]松鼠的新家 解题报告
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
随机推荐
- 失物找寻APP软件需求规格说明书——第三次团队作业
⭐对于软件需求规格说明书的理解 在没写这份软件需求规格说明书的时候我们组成员都不是很理解它的必要性,当然,写完之后才知道它的作用. 软件需求说明书的存在是为了使用户和软件开发者双方对该软件的初始规定有 ...
- Pointcut 笔记
教程 https://blog.csdn.net/kkdelta/article/details/7441829 http://www.cnblogs.com/youse/p/6564524.html ...
- vue特殊属性 key ref slot
1.key 当使用key时,必须设置兄弟元素唯一的key,当key排列顺序变化时,兄弟元素会重新排列,而当key的值变化时,这个元素会被重新渲染. 有相同父元素的子元素必须有独特的 key.重复的 k ...
- Python_列表推导式_生成器的表达式_各种推导式_40
列表推导式: #列表推导式: egg_list = [] for i in range(10): egg_list.append('鸡蛋%s'%i) print(egg_list) egon egg_ ...
- H5 38-背景图片和插入图片区别
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- git更新提交代码常用命令
git pull 拉取代码 git add -A 提交所有变化(包括删除.新增.修改) git commit -m "注释" 本地仓库提交 git push origin mast ...
- ElasticSearch(简称ES)
Windows下安装ElasticSearch ElasticSearch(简称ES)是一个基于Lucene的分布式全文搜索服务器,和SQL Server的全文索引(Fulltext Index) ...
- pdf中内嵌字体问题
在提交论文pdf到IEEE时总要检查字体是否为内嵌的,查看pdf中所有字体及是否内嵌可查看:http://sinme.blog.sohu.com/120043575.html. 具体做法是: 在pdf ...
- 快速失败/报错机制 - fail-fast
一.快速报错机制(fail-fast) 这是<Java编程思想>中关于快速报错机制的描述 Java容器有一种保护机制,能够防止多个进程同时修改同一个容器的内容.如果在你迭代遍历容器的过程中 ...
- [转帖]xargs命令详解,xargs与管道的区别
xargs命令详解,xargs与管道的区别 https://www.cnblogs.com/wangqiguo/p/6464234.html 之前一直说要学习一下 xargs 到现在为止也没学习.. ...