Redis 内存管理 源码分析
要想了解redis底层的内存管理是如何进行的,直接看源码绝对是一个很好的选择
下面是我添加了详细注释的源码,需要注意的是,为了便于源码分析,我把redis为了弥补平台差异的那部分代码删了,只需要知道有这个东西便好
下面我会贴上两份源码:一份是我自己的,有删减添加了注释的,一部分是原生的,可以做个参考对照
redis内存管理部分的源码在zmalloc.h文件和zmalloc.c文件
推荐文章:
https://www.cnblogs.com/likui360/p/5272443.html
https://www.cnblogs.com/likui360/p/5272975.html
http://wiki.jikexueyuan.com/project/redis/memory-data-management.html
我的源码
zmalloc.h:
#ifndef __ZMALLOC_H
#define __ZMALLOC_H #define __xstr(s) __str(s)
#define __str(s) #s #ifndef ZMALLOC_LIB
#define ZMALLOC_LIB "libc"
#endif /*
CPU一次性能读取数据的二进制位数称为字长,也就是我们通常所说的32位系统(字长4个字节)、64位系统(字长8个字节)的由来。 所谓的8字节对齐,就是指变量的起始地址是8的倍数。 比如程序运行时(CPU)在读取long型数据的时候,只需要一个总线周期,时间更短, 如果不是8字节对齐的则需要两个总线周期才能读完数据。 本文中我提到的8字节对齐是针对64位系统而言的,如果是32位系统那么就是4字节对齐。 实际上Redis源码中的字节对齐是软编码,而非硬编码。 里面多用sizeof(long)或sizeof(size_t)来表示。 size_t(gcc中其值为long unsigned int)和long的长度是一样的, long的长度就是计算机的字长。 这样在未来的系统中如果字长(long的大小)不是8个字节了,该段代码依然能保证相应代码可用。 */ /**
Redis内存模型: |--------|:代表8个字节大小 | 头部 | 实际内存 |
|--------|--------|--------|--------|--------|
^
|
ptr:实际返回的地址 上面的内存模型说明了两个问题: 1.内存对齐,都是8个字节的,可以提高cpu响应速度 2.返回的实际地址不包括头部 ps:从左到右内存地址是增加的,默认大端模式 */
//============ API ==================// //封装malloc,申请内存
void *zmalloc(size_t size); //封装calloc,不再支持按块成倍申请
void *zcalloc(size_t size); //封装realloc,内存扩展
void *zrealloc(void *ptr, size_t size); //封装free,内存释放,释放时会更新已经使用的内存值,如果在多线程下没有开启安全模式,可能会出现并发错误
void zfree(void *ptr); //复制一个字符串,为字符串在堆分配内存
char *zstrdup(const char *s); //获取已经使用的内存大小
size_t zmalloc_used_memory(void); //设置内存管理为多线程安全模式,设置之后在更新使用内存大小时会使用mutex进行互斥操作
void zmalloc_enable_thread_safeness(void); //设置内存异常时的回调函数
void zmalloc_set_oom_handler(void (*oom_handler)(size_t)); //内存碎片率,驻留在物理内存中的内存/总分配的物理内存
float zmalloc_get_fragmentation_ratio(size_t rss); //获取进程可使用的所有内存大小
size_t zmalloc_get_rss(void); //获得private_dirty字段
size_t zmalloc_get_private_dirty(void); //用这个释放内存时,不会更新使用内存变量的值。
void zlibc_free(void *ptr); //获取内内存块总体大小
size_t zmalloc_size(void *ptr); #endif /* __ZMALLOC_H */ /*
1.malloc函数和calloc函数的区别 void *malloc(unsigned int size) 在内存中分配一个大小为size的连续空间 void* calloc(unsigned int num,unsigned int size)在内存中分配num个size大小的内存空间 调用malloc后内存中的数据是随机的垃圾数据 调用calloc后内存中的数据是0,因为calloc会自动清零 2.redis为了方便管理内存,在分配一块内存之后,会将内存大小size插入内存头部,size所占内存大小固定 3.Redis允许使用四种内存管理策略:jemalloc,tcmalloc,苹果系统自带的malloc,其他系统自带的malloc 当存在前面三种策略的时候,就选择前面三种,第四种是没有选择的选择 jemalloc是freebsd操作系统自带的内存分配策略,具有速度快,多线程优化的特点 tcmalloc是谷歌开发的,里面集成了很多内存分配的测试工具 这二者的性能不分伯仲 4.Redis很多对象都是共享的,可以节约内存 5.memory aware【内存感知】 Redis能随时高性能的感知所使用的内存总量,实时的获取Redis所使用的内存的大小,从而随时感知内存 实现方式:
每次分配/释放内存时都更新一个全局的内存使用值 6.内存对齐,比如5位补齐为8位,CPU访问对齐内存仅仅需要一次,访问非对齐内存需要2次,内存对齐可以提高cpu的访问速率 */
zmalloc.c:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include "zmalloc.h" //记录已经使用的内存大小
static size_t used_memory = ; //线程安全开关
static int zmalloc_thread_safe = ; //互斥锁,如果开启了线程安全,而编译器又不支持原子操作函数,则需要互斥锁来完成代码互斥操作
pthread_mutex_t used_memory_mutex = PTHREAD_MUTEX_INITIALIZER; //头部长度
#define PREFIX_SIZE (sizeof(size_t)) //以线程安全的方式 增加 内存已使用 变量
#define update_zmalloc_stat_add(__n) do { \
pthread_mutex_lock(&used_memory_mutex); \
used_memory += (__n); \
pthread_mutex_unlock(&used_memory_mutex); \
} while() //以线程安全的方式 减小 内存已使用 变量 #define update_zmalloc_stat_sub(__n) do { \
pthread_mutex_lock(&used_memory_mutex); \
used_memory -= (__n); \
pthread_mutex_unlock(&used_memory_mutex); \
} while() //增加 已经使用的内存大小,函数内确定是否以线程安全的模式运行
#define update_zmalloc_stat_alloc(__n) do { \
size_t _n = (__n); \
if (_n&(sizeof(long)-)) _n += sizeof(long)-(_n&(sizeof(long)-));/*手动内存补齐*/ \
if (zmalloc_thread_safe) { \
update_zmalloc_stat_add(_n); \
} else { \
used_memory += _n; \
} \
} while() //减小 已经使用的内存大小,函数内确定是否以线程安全的模式运行
#define update_zmalloc_stat_free(__n) do { \
size_t _n = (__n); \
if (_n&(sizeof(long)-)) _n += sizeof(long)-(_n&(sizeof(long)-)); /*手动内存补齐*/ \
if (zmalloc_thread_safe) { \
update_zmalloc_stat_sub(_n); \
} else { \
used_memory -= _n; \
} \
} while() //释放内存,不会更改 已使用内存变量
void zlibc_free(void *ptr)
{
free(ptr);
} //打印错误信息并且终止程序 OOM:out of memory
static void zmalloc_default_oom(size_t size)
{
fprintf(stderr, "zmalloc: Out of memory trying to allocate %zu bytes\n",
size);
fflush(stderr);
abort();
} //设置OMM时的回调函数
static void (*zmalloc_oom_handler)(size_t) = zmalloc_default_oom; //申请size大小的连续内存空间,返回一个指向该空间的指针
void *zmalloc(size_t size)
{
//申请内存空间,预留了PREFIX_SIZE这样一小段空间
void *ptr = malloc(size+PREFIX_SIZE); //oom out of memory
if (!ptr) zmalloc_oom_handler(size); // 如果分配不成功,那么说明内存用尽 //把内存大小存储在头部
*((size_t*)ptr) = size; //更新已经使用的内存大小
update_zmalloc_stat_alloc(size+PREFIX_SIZE); //返回指向该内存空间实际地址的指针,该指针不指向存放内存大小的内存头部
return (char*)ptr+PREFIX_SIZE;
} //内存申请
void *zcalloc(size_t size)
{
//不再支持按倍数分配内存
void *ptr = calloc(, size+PREFIX_SIZE); //内存分配失败,调用回调函数
if (!ptr) zmalloc_oom_handler(size); *((size_t*)ptr) = size; //更改已经使用的内存大小
update_zmalloc_stat_alloc(size+PREFIX_SIZE); //返回指向该内存块的指针
return (char*)ptr+PREFIX_SIZE;
} //指定的内存扩展为size大小,返回扩展后的内存块指针
void *zrealloc(void *ptr, size_t size)
{
void *realptr;
size_t oldsize;
void *newptr; //原内存为空,则直接申请
if (ptr == NULL) return zmalloc(size); //实际内存地址指针(包含头部)
realptr = (char*)ptr-PREFIX_SIZE; //实际内存大小(包含头部)
oldsize = *((size_t*)realptr); //其实zrealloc底层还是封装了realloc,将原内存扩展为size+PREFIX_SIZE大小
newptr = realloc(realptr,size+PREFIX_SIZE); //内存扩展失败,进行回调
if (!newptr) zmalloc_oom_handler(size); //新内存块大小记录在内存头部
*((size_t*)newptr) = size; //修改已使用的内存大小
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(size); //返回指针指向扩展后的内存块(不包含头部)
return (char*)newptr+PREFIX_SIZE;
} //返回指定内存块的大小(不包括头部)
size_t zmalloc_size(void *ptr)
{
//指向实际内存块(包含头部)
void *realptr = (char*)ptr-PREFIX_SIZE; //实际内存块大小
size_t size = *((size_t*)realptr); //内存对齐,比如5位补齐为8位,CPU访问对齐内存仅仅需要一次,访问非对齐内存需要2次,内存对齐可以提高cpu的访问速率
if (size&(sizeof(long)-)) size += sizeof(long)-(size&(sizeof(long)-)); //返回内存大小(不包括头部)
return size+PREFIX_SIZE;
} //释放内存,会更改 已使用的内存变量
void zfree(void *ptr)
{
/*释放内存之前要先获得包含头部内存的实际内存地址,才能避免头部内存的内存泄漏*/
void *realptr;
size_t oldsize; //空内存 直接返回
if (ptr == NULL) return; //指向实际内存(包含内存头部)
realptr = (char*)ptr-PREFIX_SIZE; //实际内存大小
oldsize = *((size_t*)realptr); //更改已使用的内存变量
update_zmalloc_stat_free(oldsize+PREFIX_SIZE); //释放
free(realptr); } //复制字符串
char *zstrdup(const char *s)
{
size_t l = strlen(s)+;
char *p = zmalloc(l);
memcpy(p,s,l);
return p;
} //获得已使用的内存空间
size_t zmalloc_used_memory(void)
{
size_t um; //线程不安全的情况 加锁
if (zmalloc_thread_safe)
{
pthread_mutex_lock(&used_memory_mutex);
um = used_memory;
pthread_mutex_unlock(&used_memory_mutex); }
else
{
um = used_memory;
} return um;
} //启动线程安全的开关,保证线程安全
void zmalloc_enable_thread_safeness(void)
{
zmalloc_thread_safe = ;
} //设置OMM的回调函数
void zmalloc_set_oom_handler(void (*oom_handler)(size_t))
{
zmalloc_oom_handler = oom_handler;
} //下面几个函数深究起来意义不大 //获取进程可使用的所有内存大小
size_t zmalloc_get_rss(void)
{
//很多东西我注释掉了.....
return zmalloc_used_memory();
} //内存碎片率
float zmalloc_get_fragmentation_ratio(size_t rss)
{
return (float)rss/zmalloc_used_memory();
} //获得private_dirty字段
size_t zmalloc_get_private_dirty(void)
{
return ;
}
原生源码:
zmalloc.h:
/* zmalloc - total amount of allocated memory aware version of malloc()
*
* Copyright (c) 2009-2010, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/ #ifndef __ZMALLOC_H
#define __ZMALLOC_H /* Double expansion needed for stringification of macro values. */
#define __xstr(s) __str(s)
#define __str(s) #s #if defined(USE_TCMALLOC)
#define ZMALLOC_LIB ("tcmalloc-" __xstr(TC_VERSION_MAJOR) "." __xstr(TC_VERSION_MINOR))
#include <google/tcmalloc.h>
#if (TC_VERSION_MAJOR == 1 && TC_VERSION_MINOR >= 6) || (TC_VERSION_MAJOR > 1)
#define HAVE_MALLOC_SIZE 1
#define zmalloc_size(p) tc_malloc_size(p)
#else
#error "Newer version of tcmalloc required"
#endif #elif defined(USE_JEMALLOC)
#define ZMALLOC_LIB ("jemalloc-" __xstr(JEMALLOC_VERSION_MAJOR) "." __xstr(JEMALLOC_VERSION_MINOR) "." __xstr(JEMALLOC_VERSION_BUGFIX))
#include <jemalloc/jemalloc.h>
#if (JEMALLOC_VERSION_MAJOR == 2 && JEMALLOC_VERSION_MINOR >= 1) || (JEMALLOC_VERSION_MAJOR > 2)
#define HAVE_MALLOC_SIZE 1
#define zmalloc_size(p) je_malloc_usable_size(p)
#else
#error "Newer version of jemalloc required"
#endif #elif defined(__APPLE__)
#include <malloc/malloc.h>
#define HAVE_MALLOC_SIZE 1
#define zmalloc_size(p) malloc_size(p)
#endif #ifndef ZMALLOC_LIB
#define ZMALLOC_LIB "libc"
#endif void *zmalloc(size_t size);
void *zcalloc(size_t size);
void *zrealloc(void *ptr, size_t size);
void zfree(void *ptr);
char *zstrdup(const char *s);
size_t zmalloc_used_memory(void);
void zmalloc_enable_thread_safeness(void);
void zmalloc_set_oom_handler(void (*oom_handler)(size_t));
float zmalloc_get_fragmentation_ratio(size_t rss);
size_t zmalloc_get_rss(void);
size_t zmalloc_get_private_dirty(void);
void zlibc_free(void *ptr); #ifndef HAVE_MALLOC_SIZE
size_t zmalloc_size(void *ptr);
#endif #endif /* __ZMALLOC_H */
zmalloc.c:
/* zmalloc - total amount of allocated memory aware version of malloc()
*
* Copyright (c) 2009-2010, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/ #include <stdio.h>
#include <stdlib.h> /* This function provide us access to the original libc free(). This is useful
* for instance to free results obtained by backtrace_symbols(). We need
* to define this function before including zmalloc.h that may shadow the
* free implementation if we use jemalloc or another non standard allocator. */
void zlibc_free(void *ptr) {
free(ptr);
} #include <string.h>
#include <pthread.h>
#include "config.h"
#include "zmalloc.h" #ifdef HAVE_MALLOC_SIZE
#define PREFIX_SIZE (0)
#else
#if defined(__sun) || defined(__sparc) || defined(__sparc__)
#define PREFIX_SIZE (sizeof(long long))
#else
#define PREFIX_SIZE (sizeof(size_t))
#endif
#endif /* Explicitly override malloc/free etc when using tcmalloc. */
#if defined(USE_TCMALLOC)
#define malloc(size) tc_malloc(size)
#define calloc(count,size) tc_calloc(count,size)
#define realloc(ptr,size) tc_realloc(ptr,size)
#define free(ptr) tc_free(ptr)
#elif defined(USE_JEMALLOC)
#define malloc(size) je_malloc(size)
#define calloc(count,size) je_calloc(count,size)
#define realloc(ptr,size) je_realloc(ptr,size)
#define free(ptr) je_free(ptr)
#endif #ifdef HAVE_ATOMIC
#define update_zmalloc_stat_add(__n) __sync_add_and_fetch(&used_memory, (__n))
#define update_zmalloc_stat_sub(__n) __sync_sub_and_fetch(&used_memory, (__n))
#else
#define update_zmalloc_stat_add(__n) do { \
pthread_mutex_lock(&used_memory_mutex); \
used_memory += (__n); \
pthread_mutex_unlock(&used_memory_mutex); \
} while() #define update_zmalloc_stat_sub(__n) do { \
pthread_mutex_lock(&used_memory_mutex); \
used_memory -= (__n); \
pthread_mutex_unlock(&used_memory_mutex); \
} while() #endif #define update_zmalloc_stat_alloc(__n) do { \
size_t _n = (__n); \
if (_n&(sizeof(long)-)) _n += sizeof(long)-(_n&(sizeof(long)-)); \
if (zmalloc_thread_safe) { \
update_zmalloc_stat_add(_n); \
} else { \
used_memory += _n; \
} \
} while() #define update_zmalloc_stat_free(__n) do { \
size_t _n = (__n); \
if (_n&(sizeof(long)-)) _n += sizeof(long)-(_n&(sizeof(long)-)); \
if (zmalloc_thread_safe) { \
update_zmalloc_stat_sub(_n); \
} else { \
used_memory -= _n; \
} \
} while() static size_t used_memory = ;
static int zmalloc_thread_safe = ;
pthread_mutex_t used_memory_mutex = PTHREAD_MUTEX_INITIALIZER; static void zmalloc_default_oom(size_t size) {
fprintf(stderr, "zmalloc: Out of memory trying to allocate %zu bytes\n",
size);
fflush(stderr);
abort();
} static void (*zmalloc_oom_handler)(size_t) = zmalloc_default_oom; void *zmalloc(size_t size) {
void *ptr = malloc(size+PREFIX_SIZE); if (!ptr) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_alloc(zmalloc_size(ptr));
return ptr;
#else
*((size_t*)ptr) = size;
update_zmalloc_stat_alloc(size+PREFIX_SIZE);
return (char*)ptr+PREFIX_SIZE;
#endif
} void *zcalloc(size_t size) {
void *ptr = calloc(, size+PREFIX_SIZE); if (!ptr) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_alloc(zmalloc_size(ptr));
return ptr;
#else
*((size_t*)ptr) = size;
update_zmalloc_stat_alloc(size+PREFIX_SIZE);
return (char*)ptr+PREFIX_SIZE;
#endif
} void *zrealloc(void *ptr, size_t size) {
#ifndef HAVE_MALLOC_SIZE
void *realptr;
#endif
size_t oldsize;
void *newptr; if (ptr == NULL) return zmalloc(size);
#ifdef HAVE_MALLOC_SIZE
oldsize = zmalloc_size(ptr);
newptr = realloc(ptr,size);
if (!newptr) zmalloc_oom_handler(size); update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(zmalloc_size(newptr));
return newptr;
#else
realptr = (char*)ptr-PREFIX_SIZE;
oldsize = *((size_t*)realptr);
newptr = realloc(realptr,size+PREFIX_SIZE);
if (!newptr) zmalloc_oom_handler(size); *((size_t*)newptr) = size;
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(size);
return (char*)newptr+PREFIX_SIZE;
#endif
} /* Provide zmalloc_size() for systems where this function is not provided by
* malloc itself, given that in that case we store a header with this
* information as the first bytes of every allocation. */
#ifndef HAVE_MALLOC_SIZE
size_t zmalloc_size(void *ptr) {
void *realptr = (char*)ptr-PREFIX_SIZE;
size_t size = *((size_t*)realptr);
/* Assume at least that all the allocations are padded at sizeof(long) by
* the underlying allocator. */
if (size&(sizeof(long)-)) size += sizeof(long)-(size&(sizeof(long)-));
return size+PREFIX_SIZE;
}
#endif void zfree(void *ptr) {
#ifndef HAVE_MALLOC_SIZE
void *realptr;
size_t oldsize;
#endif if (ptr == NULL) return;
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_free(zmalloc_size(ptr));
free(ptr);
#else
realptr = (char*)ptr-PREFIX_SIZE;
oldsize = *((size_t*)realptr);
update_zmalloc_stat_free(oldsize+PREFIX_SIZE);
free(realptr);
#endif
} char *zstrdup(const char *s) {
size_t l = strlen(s)+;
char *p = zmalloc(l); memcpy(p,s,l);
return p;
} size_t zmalloc_used_memory(void) {
size_t um; if (zmalloc_thread_safe) {
#ifdef HAVE_ATOMIC
um = __sync_add_and_fetch(&used_memory, );
#else
pthread_mutex_lock(&used_memory_mutex);
um = used_memory;
pthread_mutex_unlock(&used_memory_mutex);
#endif
}
else {
um = used_memory;
} return um;
} void zmalloc_enable_thread_safeness(void) {
zmalloc_thread_safe = ;
} void zmalloc_set_oom_handler(void (*oom_handler)(size_t)) {
zmalloc_oom_handler = oom_handler;
} /* Get the RSS information in an OS-specific way.
*
* WARNING: the function zmalloc_get_rss() is not designed to be fast
* and may not be called in the busy loops where Redis tries to release
* memory expiring or swapping out objects.
*
* For this kind of "fast RSS reporting" usages use instead the
* function RedisEstimateRSS() that is a much faster (and less precise)
* version of the function. */ #if defined(HAVE_PROC_STAT)
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h> size_t zmalloc_get_rss(void) {
int page = sysconf(_SC_PAGESIZE);
size_t rss;
char buf[];
char filename[];
int fd, count;
char *p, *x; snprintf(filename,,"/proc/%d/stat",getpid());
if ((fd = open(filename,O_RDONLY)) == -) return ;
if (read(fd,buf,) <= ) {
close(fd);
return ;
}
close(fd); p = buf;
count = ; /* RSS is the 24th field in /proc/<pid>/stat */
while(p && count--) {
p = strchr(p,' ');
if (p) p++;
}
if (!p) return ;
x = strchr(p,' ');
if (!x) return ;
*x = '\0'; rss = strtoll(p,NULL,);
rss *= page;
return rss;
}
#elif defined(HAVE_TASKINFO)
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <mach/task.h>
#include <mach/mach_init.h> size_t zmalloc_get_rss(void) {
task_t task = MACH_PORT_NULL;
struct task_basic_info t_info;
mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT; if (task_for_pid(current_task(), getpid(), &task) != KERN_SUCCESS)
return ;
task_info(task, TASK_BASIC_INFO, (task_info_t)&t_info, &t_info_count); return t_info.resident_size;
}
#else
size_t zmalloc_get_rss(void) {
/* If we can't get the RSS in an OS-specific way for this system just
* return the memory usage we estimated in zmalloc()..
*
* Fragmentation will appear to be always 1 (no fragmentation)
* of course... */
return zmalloc_used_memory();
}
#endif /* Fragmentation = RSS / allocated-bytes */
float zmalloc_get_fragmentation_ratio(size_t rss) {
return (float)rss/zmalloc_used_memory();
} #if defined(HAVE_PROC_SMAPS)
size_t zmalloc_get_private_dirty(void) {
char line[];
size_t pd = ;
FILE *fp = fopen("/proc/self/smaps","r"); if (!fp) return ;
while(fgets(line,sizeof(line),fp) != NULL) {
if (strncmp(line,"Private_Dirty:",) == ) {
char *p = strchr(line,'k');
if (p) {
*p = '\0';
pd += strtol(line+,NULL,) * ;
}
}
}
fclose(fp);
return pd;
}
#else
size_t zmalloc_get_private_dirty(void) {
return ;
}
#endif
Redis 内存管理 源码分析的更多相关文章
- Redis网络模型的源码分析
Redis的网络模型是基于I/O多路复用程序来实现的.源码中包含四种多路复用函数库epoll.select.evport.kqueue.在程序编译时会根据系统自动选择这四种库其中之一.下面以epoll ...
- Redis之ziplist源码分析
一.ziplist简介 从上一篇分析我们知道quicklist的底层存储使用了ziplist(压缩列表),由于压缩列表本身也有不少内容,所以重新开了一篇,在正式源码之前,还是先看下ziplist的特点 ...
- Redis网络库源码分析(1)之介绍篇
一.前言 Redis网络库是一个单线程EPOLL模型的网络库,和Memcached使用的libevent相比,它没有那么庞大,代码一共2000多行,因此比较容易分析.其实网上已经有非常多有关这个网络库 ...
- Redis 数据结构-字符串源码分析
相关文章 Redis 初探-安装与使用 Redis常用指令 本文将从以下几个部分进行介绍 1.前言 2.常用命令 3.字符串结构 4.字符串实现 5.命令是如果操作字符串的 前言 平时在使用 Redi ...
- Redis之quicklist源码分析
一.quicklist简介 Redis列表是简单的字符串列表,按照插入顺序排序.你可以添加一个元素到列表的头部(左边)或者尾部(右边). 一个列表最多可以包含 232 - 1 个元素 (4294967 ...
- Redis事件库源码分析
由于老大在新项目中使用redis的事件库代替了libevent,我也趁着机会读了一遍redis的事件库代码,第一次读到“优美,让人愉快”的代码,加之用xmind制作的类图非常帅,所以留文纪念. Red ...
- Redis网络库源码分析(3)之ae.c
一.aeCreateEventLoop & aeCreateFileEvent 上一篇文章中,我们已经将服务器启动,只是其中有些细节我们跳过了,比如aeCreateEventLoop函数到底做 ...
- Redis学习——链表源码分析
0. 前言 Redis 中的链表是以通用链表的形式实现的,而对于链表的用途来说,主要的功能就是增删改查,所以对于查找来说,redis其提供了一个match函数指针,用户负责实现其具体的匹配操作,从而实 ...
- 第10课:[实战] Redis 网络通信模块源码分析(3)
redis-server 接收到客户端的第一条命令 redis-cli 给 redis-server 发送的第一条数据是 *1\r\n\$7\r\nCOMMAND\r\n .我们来看下对于这条数据如何 ...
随机推荐
- Socket与WebSocket以及http与https重新总结
Socket与WebSocket以及http与https重新总结 一.Socket 网络中的Socket是一个抽象的接口 ,而是为了方便使用TCP或UDP而抽象出来的一层 ,可以理解为网络中连接的两端 ...
- Java生鲜电商平台-定时器,定时任务quartz的设计与架构
Java生鲜电商平台-定时器,定时任务quartz的设计与架构 说明:任何业务有时候需要系统在某个定点的时刻执行某些任务,比如:凌晨2点统计昨天的报表,早上6点抽取用户下单的佣金. 对于Java开源生 ...
- 打开前端工程 Node Sass does not yet support your current environment: Windows 64-bit
卸载当前sass版本,重新安装sass 打开cmd进入工程文件夹: 删除 npm uninstall --save node-sass 安装 npm install --save node-sass ...
- linux的initcall机制
linux的initcall机制(针对编译进内核的驱动) initcall机制的由来 我们都知道,linux对驱动程序提供静态编译进内核和动态加载两种方式,当我们试图将一个驱动程序编译进内核时,开发者 ...
- if语句编写Mysql备份脚本
#!/bin/bash #auto bakcup mysql db #by authors zgh #define backup path BAK_DIR=/data/backup/`date +%Y ...
- SQL之单表与多表查询
DML语句使用 source 路径 :把SQL脚本导入到数据库中 查询语句类型:[简单查询|多表查询|子查询] 投影:select 字段名,字段名 from 表名 where ...
- 快速、优雅的前端IDE之H-builder-X
为什么介绍的是HBuidler-X而不是Hbuilder HX是全新的一个软件,它抛弃了eclipse架构,使用C++为基础架构.HX目前还不能完全替代HBuilder.但在markdown记事的 ...
- 逆向破解之160个CrackMe —— 010-011
CrackMe —— 010 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合一共160个待逆向破解的程序 CrackMe:它们都是一些公开给别人尝试破解的小程序,制作 c ...
- Qt工程管理
Qt Creator工程管理Qt Creator以工程项目的方式对源码进行管理一个Qt Creator工程包含不同类型的文件 .pro项目描述文件.pro.user用户配置描述文件 //由Qt Cre ...
- 201871010136-赵艳强《面向对象程序设计(java)》第十五周学习总结
201871010136-赵艳强<面向对象程序设计JAVA>第十五周实验总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh 这 ...