code and dataset resources of computer vision
From:http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html
Source Code
Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at your own risk!
Feature Detection and Description
General Libraries:
- VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. SeeModern features: Software – Slides providing a demonstration of VLFeat and also links to other software. Check also VLFeat hands-on session training
- OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)
Fast Keypoint Detectors for Real-time Applications:
- FAST – High-speed corner detector implementation for a wide variety of platforms
- AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).
Binary Descriptors for Real-Time Applications:
- BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)
- ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)
- BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)
- FREAK – Faster than BRISK (invariant to rotations and scale) (CVPR 2012)
SIFT and SURF Implementations:
- SIFT: VLFeat, OpenCV, Original code by David Lowe, GPU implementation, OpenSIFT
- SURF: Herbert Bay’s code, OpenCV, GPU-SURF
Other Local Feature Detectors and Descriptors:
- VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.
- LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).
- Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).
Global Image Descriptors:
- GIST – Matlab code for the GIST descriptor
- CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)
Feature Coding and Pooling
- VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.
- Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)
Convolutional Nets and Deep Learning
- Caffe – Fast C++ implementation of deep convolutional networks (GPU / CPU / ImageNet 2013 demonstration).
- OverFeat – C++ library for integrated classification and localization of objects.
- EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.
- Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.
- Deep Learning - Various links for deep learning software.
Facial Feature Detection and Tracking
- IntraFace – Very accurate detection and tracking of facial features (C++/Matlab API).
Part-Based Models
- Deformable Part-based Detector – Library provided by the authors of the original paper (state-of-the-art in PASCAL VOC detection task)
- Efficient Deformable Part-Based Detector – Branch-and-Bound implementation for a deformable part-based detector.
- Accelerated Deformable Part Model – Efficient implementation of a method that achieves the exact same performance of deformable part-based detectors but with significant acceleration (ECCV 2012).
- Coarse-to-Fine Deformable Part Model – Fast approach for deformable object detection (CVPR 2011).
- Poselets – C++ and Matlab versions for object detection based on poselets.
- Part-based Face Detector and Pose Estimation – Implementation of a unified approach for face detection, pose estimation, and landmark localization (CVPR 2012).
Attributes and Semantic Features
- Relative Attributes – Modified implementation of RankSVM to train Relative Attributes (ICCV 2011).
- Object Bank – Implementation of object bank semantic features (NIPS 2010). See also ActionBank
- Classemes, Picodes, and Meta-class features – Software for extracting high-level image descriptors (ECCV 2010, NIPS 2011, CVPR 2012).
Large-Scale Learning
- Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).
- LIBLINEAR – Library for large-scale linear SVM classification.
- VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.
Fast Indexing and Image Retrieval
- FLANN – Library for performing fast approximate nearest neighbor.
- Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).
- ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).
- INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).
Object Detection
- See Part-based Models and Convolutional Nets above.
- Pedestrian Detection at 100fps – Very fast and accurate pedestrian detector (CVPR 2012).
- Caltech Pedestrian Detection Benchmark – Excellent resource for pedestrian detection, with various links for state-of-the-art implementations.
- OpenCV – Enhanced implementation of Viola&Jones real-time object detector, with trained models for face detection.
- Efficient Subwindow Search – Source code for branch-and-bound optimization for efficient object localization (CVPR 2008).
3D Recognition
- Point-Cloud Library – Library for 3D image and point cloud processing.
Action Recognition
- ActionBank – Source code for action recognition based on the ActionBank representation (CVPR 2012).
- STIP Features – software for computing space-time interest point descriptors
- Independent Subspace Analysis – Look for Stacked ISA for Videos (CVPR 2011)
- Velocity Histories of Tracked Keypoints - C++ code for activity recognition using the velocity histories of tracked keypoints (ICCV 2009)
Datasets
Attributes
- Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.
- aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.
- FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.
- PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.
- LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.
- Human Attributes – 8,000 people with annotated attributes. Check also this link for another dataset of human attributes.
- SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.
- ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.
- Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for the WhittleSearch data.
- Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.
Fine-grained Visual Categorization
- Caltech-UCSD Birds Dataset – Hundreds of bird categories with annotated parts and attributes.
- Stanford Dogs Dataset – 20,000 images of 120 breeds of dogs from around the world.
- Oxford-IIIT Pet Dataset – 37 category pet dataset with roughly 200 images for each class. Pixel level trimap segmentation is included.
- Leeds Butterfly Dataset – 832 images of 10 species of butterflies.
- Oxford Flower Dataset – Hundreds of flower categories.
Face Detection
- FDDB – UMass face detection dataset and benchmark (5,000+ faces)
- CMU/MIT – Classical face detection dataset.
Face Recognition
- Face Recognition Homepage – Large collection of face recognition datasets.
- LFW – UMass unconstrained face recognition dataset (13,000+ face images).
- NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.
- CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.
- FERET – Classical face recognition dataset.
- Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.
- SCFace – Low-resolution face dataset captured from surveillance cameras.
Handwritten Digits
- MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.
Pedestrian Detection
- Caltech Pedestrian Detection Benchmark – 10 hours of video taken from a vehicle,350K bounding boxes for about 2.3K unique pedestrians.
- INRIA Person Dataset – Currently one of the most popular pedestrian detection datasets.
- ETH Pedestrian Dataset – Urban dataset captured from a stereo rig mounted on a stroller.
- TUD-Brussels Pedestrian Dataset – Dataset with image pairs recorded in an crowded urban setting with an onboard camera.
- PASCAL Human Detection – One of 20 categories in PASCAL VOC detection challenges.
- USC Pedestrian Dataset – Small dataset captured from surveillance cameras.
Generic Object Recognition
- ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.
- Tiny Images – 80 million 32x32 low resolution images.
- Pascal VOC – One of the most influential visual recognition datasets.
- Caltech 101 / Caltech 256 – Popular image datasets containing 101 and 256 object categories, respectively.
- MIT LabelMe – Online annotation tool for building computer vision databases.
Scene Recognition
- MIT SUN Dataset – MIT scene understanding dataset.
- UIUC Fifteen Scene Categories – Dataset of 15 natural scene categories.
Feature Detection and Description
- VGG Affine Dataset – Widely used dataset for measuring performance of feature detection and description. CheckVLBenchmarksfor an evaluation framework.
Action Recognition
- Benchmarking Activity Recognition – CVPR 2012 tutorial covering various datasets for action recognition.
RGBD Recognition
- RGB-D Object Dataset – Dataset containing 300 common household objects
Related Courses
- Visual Recognition - Kristen Grauman, U. Texas, Fall 2012.
- The Cutting Edge of Computer Vision - Fei-Fei Li, Stanford, Spring 2011.
- Learning-based Methods in Vision - Alyosha Efros and Leonid Sigal, CMU, Spring 2012.
- Grounding Object Recognition and Scene Understanding - Antonio Torralba, MIT, Fall 2011.
code and dataset resources of computer vision的更多相关文章
- Computer Vision Resources
Computer Vision Resources Softwares Topic Resources References Feature Extraction SIFT [1] [Demo pro ...
- paper 156:专家主页汇总-计算机视觉-computer vision
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...
- [转载]Three Trending Computer Vision Research Areas, 从CVPR看接下来几年的CV的发展趋势
As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer V ...
- Analyzing The Papers Behind Facebook's Computer Vision Approach
Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company c ...
- Computer Vision Algorithm Implementations
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...
- 关于《master opencv with practical computer vision projects》的源代码
很多读者都在向我要<master opencv with practical computer vision projects>的源代码,现向读者公布,具体源代码地址如下: https:/ ...
- Computer Vision Tutorials from Conferences (3) -- CVPR
CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...
- My Reading List - Machine Learning && Computer Vision
本博客汇总了个人在学习过程中所看过的一些论文.代码.资料以及常用的资源与网站,为了便于记录自身的学习过程,将其整理于博客之中. Machine Learning (1) Machine Learnin ...
- 计算机视觉中的边缘检测Edge Detection in Computer Vision
计算机视觉中的边缘检测 边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提 ...
随机推荐
- 关于nginx反代jenkins报错 反向代理设置有误
官方文档地址: https://wiki.jenkins.io/display/JENKINS/Running+Jenkins+behind+Nginx 直接解决的配置文件吧. 这是使用子域名,不使用 ...
- YII框架的行为
一.什么是行为 行为,也称为 mixins,可以无须改变类继承关系即可增强一个已有的类的功能. 当一个对象或类被注入某些行为后,这个对象可以像访问自己定义的方法和属性一样访问注入进来的方法和属性. 二 ...
- Java GUI:将JPanel添加进JScrollPane
实现的目标: 因为在滚动框中含有很多个Java GUI 组件,因此这里采用JPanel面板包住这些组件,在用JScrollPane实现滚动 问题1:布局揉在一起 JPanel有自己默认的布局方式,因此 ...
- 关于Vertical Align的理解
1:vertical-align 翻译就是垂直-对齐... 2:关于line-height的点 2.1:如果一个标签没有定义height属性,那么其最终表现的高度一定是由line-height起作用. ...
- LeetCode 第 154 场周赛
一."气球" 的最大数量(LeetCode-5189) 1.1 题目描述 1.2 解题思路 统计各个字母的出现的次数,然后根据"木桶最短板"返回就好. 1.3 ...
- 2018-2019-2 《网络对抗技术》Exp7 网络欺诈防范 20165326
网络欺诈防范 实践内容 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 简单应用SET工具建立冒名网站 ettercap DNS spoof 结合应用两种技术, ...
- [Vue warn]: Avoid using non-primitive value as key
<el-select v-model="addform.province" placeholder="请选择省份" multiple> ...
- 《Linux设备驱动程序》编译LDD3的scull驱动问题总结***
由于Linux内核版本更新的原因,LDD3(v2.6.10)提供的源码无法直接使用,下面是本人编译scull源码时出现的一些问题及解决方法.编译环境:Ubuntu 10.04 LTS(kernel v ...
- Java_jdbc 基础笔记之一 数据库连接
方式一: 1.创建一个Driver实现类的对象 2.准备连接数据库的基本信息:url,user,password 3.调用Driver接口的connect(url,info)获取数据库连接 * Dri ...
- 005 DOM02
在上一篇DOM的基础上,继续案例的实践. 一:案例 1.禁用文本框 <!DOCTYPE html> <html lang="en"> <head> ...