P1880 [NOI1995]石子合并

题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入格式

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例

输入 #1

4

4 5 9 4

输出 #1

43

54

【思路】

区间DP

【核心思路】

又是围成一个圈

所以处理方式很显然

就是在原来的序列后面放一个和原来序列一样的序列就可以了

这样2-n+1区间就是存在的

而且是那1-n个数

就是起点不同而已

每次合并后的值等于原来合并的价值

加上

这次合并的石子数

如果只用一个二维数组f[i][j]的话显然是没有办法保存的

所以可以利用一个很优美的东西

前缀和

利用前缀和可以求出某个区间的石子数

也就是可以知道每次石子合并可以新得到的值

那么就可以只用f[i][j]来存i-j区间内

合并石子的最值就好了

【DP式】

DP方程式:

f1[i][j] = max(f1[i][j],f1[i][k] + f1[k + 1][j] + cost[i][j])

f2[i][j] = min(f2[i][j],f2[i][k] + f2[k + 1][j] + cost[i][j])

(一个求区间最大值,一个求区间最小值)

这个区间的最值就等于分成两个小区间合并起来之后的最值

【最终结果】

最后结果

自然是比较i-i + n - 1这个区间啦

因为圈不同于一条线的就是可以任选起点

所以要比较以每一个作为起点时的最值

输出就好了

【完整代码】

#include<iostream>
#include<cstdio> using namespace std;
const int Max = 206;
int f1[Max][Max];
int f2[Max][Max];
int a[Max];
int sum[Max];
int cost[Max][Max];
int main()
{
int n;
cin >> n;
for(register int i = 1;i <= n;++ i)
cin >> a[i],a[i + n] = a[i];
for(register int i = 1;i <= n * 2;++ i)
sum[i] = sum[i - 1] + a[i];
for(register int i = 1;i <= n * 2;++ i)
for(register int j = i;j <= n * 2;++ j)
cost[i][j] = sum[j] - sum[i - 1];
for(register int len = 1;len <= n;++ len)
{
for(register int i = 1;i + len - 1 <= n * 2;++ i)
{
int j = i + len - 1;
if(i != j)
f2[i][j] = 999999999;
for(register int k = i;k < j;++ k)
f1[i][j] = max(f1[i][j],f1[i][k] + f1[k + 1][j] + cost[i][j]),
f2[i][j] = min(f2[i][j],f2[i][k] + f2[k + 1][j] + cost[i][j]);
}
}
int M = 0;
int MM = 0x7fffffff;
for(register int i = 1;i <= n;++ i)
M = max(M,f1[i][i + n - 1]),
MM = min(MM,f2[i][i + n - 1]);
cout << MM << endl << M << endl;
return 0;
}

洛谷 P1880 [NOI1995]石子合并 题解的更多相关文章

  1. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  2. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  3. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  4. 洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]

    题目传送门 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆 ...

  5. 洛谷 P1880 [NOI1995]石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  6. 洛谷 P1880 [NOI1995]石子合并(区间DP)

    嗯... 题目链接:https://www.luogu.org/problem/P1880 这道题特点在于石子是一个环,所以让a[i+n] = a[i](两倍长度)即可解决环的问题,然后注意求区间最小 ...

  7. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  8. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  9. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

随机推荐

  1. python3的pip3安装

    ---恢复内容开始--- pip3的安装需要对应一整套python的编译工具库,所以安装好的pip3是这个样子: inear@Ai:~$ pip3 -V pip 18.1 from /usr/lib/ ...

  2. SpringBoot整合freemarker 引用基础

    原 ElasticSearch学习笔记Ⅲ - SpringBoot整合ES 新建一个SpringBoot项目.添加es的maven坐标如下: <dependency> <groupI ...

  3. linux限定用户或组对磁盘空间的使用

    实验环境 环境:centos7.3 ,一块磁盘sdb分一个分区sdb1. 安装磁盘配额支持软件 yum install quota 制作文件系统,并以支持配额功能的方式挂载文件系统 mkfs.ext4 ...

  4. 车间管理难?APS系统为你智能排程

    对 APS系统不熟或者不了解他的一些运行规则也是在实施项目中导致经常不能正常运行不可忽视的因素,对 APS系统的早期了解是整个项目实施运行的成功至关重要的因素. 如果不了解 APS潜在的因素和运行准则 ...

  5. linux查看log软件

    可以使用LNAV软件查看log,还是比较方便的 安装步骤 $ sudo apt install lnav 获取帮助信息 $ lnav -h 查看日志 $ lnav 查看指定日志(后面加上绝对路径) $ ...

  6. Koa2 和 Express 中间件对比

    koa2 中间件 koa2的中间件是通过 async await 实现的,中间件执行顺序是"洋葱圈"模型. 中间件之间通过next函数联系,当一个中间件调用 next() 后,会将 ...

  7. mybatis添加sql打印功能

    添加配置文件: mybatis-config.xml <?xml version="1.0" encoding="UTF-8"?> <!DOC ...

  8. github hooks 配置教程 钩子搭建(实测通过,手把手教程)

    tips:如果本文对你有用,请爱心点个赞,提高排名,让这篇文章帮助更多的人.谢谢大家!❤ 本人hooks搭建成功,全程参考JellyBool老师的视频教程,有不懂的可以先去看下这个视频,跟着操作.本文 ...

  9. MySQL DataType--定点数(Fixed-Point Types)学习

    DECIMAL和NUMERIC MySQL支持两种定点数类型:DECIMAL和NUMERIC,而NUMERIC实现为DECIMAL,因此MySQL中DECIMAL和NUMERIC等价相同. 如使用下面 ...

  10. RocketMQ-c#代码

    导入包: https://github.com/gaufung/rocketmq-client-dotnet/tree/master using org.apache.rocketmq.client. ...