C. Geometric Progression
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and
a sequence a, consisting of n integers.

He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common
ratio k.

A subsequence of length three is a combination of three such indexes i1, i2, i3,
that 1 ≤ i1 < i2 < i3 ≤ n.
That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

Input

The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105),
showing how many numbers Polycarp's sequence has and his favorite number.

The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109)
— elements of the sequence.

Output

Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

Sample test(s)
input
5 2
1 1 2 2 4
output
4
input
3 1
1 1 1
output
1
input
10 3
1 2 6 2 3 6 9 18 3 9
output
6
Note

In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.


用map分别找a/k,a*k

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<map>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int n,k;
int a[MAXN];
bool b[MAXN]={0};
int l[MAXN]={0};
int cnt[40],cnt2[40];
ll f[MAXN]={0},f2[MAXN]={0};
map<ll,int> S;
map<ll,int>::iterator it;
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); scanf("%d%d",&n,&k);
For(i,n)
{
scanf("%d",&a[i]);
// while (a[i]%k==0) l[i]++,a[i]/=k;
} For(i,n)
{
if (a[i]%k==0&&S.find(a[i]/k)!=S.end()) f[i]=S[a[i]/k]; it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; }
S.clear(); ForD(i,n)
{
if (S.find((ll)(a[i])*k)!=S.end()) f2[i]=S[((ll)(a[i])*k)];
it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; } ll ans=0;
For(i,n) ans+=f[i]*f2[i];
cout<<ans<<endl; return 0;
}

CF 567C(Geometric Progression-map)的更多相关文章

  1. CodeForces 567C. Geometric Progression(map 数学啊)

    题目链接:http://codeforces.com/problemset/problem/567/C C. Geometric Progression time limit per test 1 s ...

  2. CF 567C Geometric Progression

    题目大意:输入两个整数 n 和 k ,接下来输入n个整数组成的序列.求该序列中三个数 满足条件的子串个数(要求字串由三个整数a,b,c组成,其中 c = k * b = k * k * a). 思路: ...

  3. Codeforces 567C - Geometric Progression - [map维护]

    题目链接:https://codeforces.com/problemset/problem/567/C 题意: 给出长度为 $n$ 的序列 $a[1:n]$,给出公比 $k$,要求你个给出该序列中, ...

  4. CodeForces 567C Geometric Progression

    Geometric Progression Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I ...

  5. Codeforces Round #Pi (Div. 2) C. Geometric Progression map

    C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  6. Codeforces 567C Geometric Progression(思路)

    题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...

  7. CodeForces 567C Geometric Progression 类似dp的递推统计方案数

    input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...

  8. map Codeforces Round #Pi (Div. 2) C. Geometric Progression

    题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...

  9. Codeforces 567C:Geometric Progression(DP)

    time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...

随机推荐

  1. 石子合并(区间dp)

    石子合并(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描写叙述     有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程仅仅能每次将相邻 ...

  2. ubuntu解压命令全览(rar)

    sudo apt-get install p7zip-full Ubuntu下解压rar文件的方法 2010-05-13 12:47 一般通过默认安装的ubuntu是不能解压rar文件的,只有在安装了 ...

  3. DNS反射放大攻击分析——DNS反射放大攻击主要是利用DNS回复包比请求包大的特点,放大流量,伪造请求包的源IP地址为受害者IP,将应答包的流量引入受害的服务器

    DNS反射放大攻击分析 摘自:http://www.shaojike.com/2016/08/19/DNS%E6%94%BE%E5%A4%A7%E6%94%BB%E5%87%BB%E7%AE%80%E ...

  4. UESTC--1271--Search gold(贪心)

    Search gold Time Limit: 1000MS   Memory Limit: 65535KB   64bit IO Format: %lld & %llu Submit Sta ...

  5. vue --- 关于多个router-view视图组件,渲染同一页面

    vue.js多视图的使用,可以提高网页组件化,模块化 比如使用多视图,可以将网站页面封装header.footer.navbar等多个公共部分, 遇到修改公共部分的文案信息等数据的时候,不再需要逐一修 ...

  6. Burnside&Polya总结

    这里就算是一个小总结吧- 附参考的网址: http://blog.sina.com.cn/s/blog_6a46cc3f0100s2qf.html http://www.cnblogs.com/han ...

  7. POJ 3233 矩阵快速幂&二分

    题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...

  8. Authrize特性登录验证

  9. 浅谈SpringCloud (一) 什么是微服务和不使用SpringCloud怎么访问服务提供者

    微服务和SpringCloud介绍 1.什么是微服务? 看过一遍介绍的很清楚的博客:https://blog.csdn.net/wuxiaobingandbob/article/details/786 ...

  10. mac下生成ssh key

    ssh -v usage: ssh [-1246AaCfGgKkMNnqsTtVvXxYy] [-b bind_address] [-c cipher_spec] [-D [bind_address: ...