CF 567C(Geometric Progression-map)
1 second
256 megabytes
standard input
standard output
Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and
a sequence a, consisting of n integers.
He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common
ratio k.
A subsequence of length three is a combination of three such indexes i1, i2, i3,
that 1 ≤ i1 < i2 < i3 ≤ n.
That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.
A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.
Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.
The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105),
showing how many numbers Polycarp's sequence has and his favorite number.
The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109)
— elements of the sequence.
Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.
5 2
1 1 2 2 4
4
3 1
1 1 1
1
10 3
1 2 6 2 3 6 9 18 3 9
6
In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.
用map分别找a/k,a*k
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<map>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int n,k;
int a[MAXN];
bool b[MAXN]={0};
int l[MAXN]={0};
int cnt[40],cnt2[40];
ll f[MAXN]={0},f2[MAXN]={0};
map<ll,int> S;
map<ll,int>::iterator it;
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); scanf("%d%d",&n,&k);
For(i,n)
{
scanf("%d",&a[i]);
// while (a[i]%k==0) l[i]++,a[i]/=k;
} For(i,n)
{
if (a[i]%k==0&&S.find(a[i]/k)!=S.end()) f[i]=S[a[i]/k]; it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; }
S.clear(); ForD(i,n)
{
if (S.find((ll)(a[i])*k)!=S.end()) f2[i]=S[((ll)(a[i])*k)];
it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; } ll ans=0;
For(i,n) ans+=f[i]*f2[i];
cout<<ans<<endl; return 0;
}
CF 567C(Geometric Progression-map)的更多相关文章
- CodeForces 567C. Geometric Progression(map 数学啊)
题目链接:http://codeforces.com/problemset/problem/567/C C. Geometric Progression time limit per test 1 s ...
- CF 567C Geometric Progression
题目大意:输入两个整数 n 和 k ,接下来输入n个整数组成的序列.求该序列中三个数 满足条件的子串个数(要求字串由三个整数a,b,c组成,其中 c = k * b = k * k * a). 思路: ...
- Codeforces 567C - Geometric Progression - [map维护]
题目链接:https://codeforces.com/problemset/problem/567/C 题意: 给出长度为 $n$ 的序列 $a[1:n]$,给出公比 $k$,要求你个给出该序列中, ...
- CodeForces 567C Geometric Progression
Geometric Progression Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- Codeforces Round #Pi (Div. 2) C. Geometric Progression map
C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...
- Codeforces 567C Geometric Progression(思路)
题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...
- CodeForces 567C Geometric Progression 类似dp的递推统计方案数
input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...
- map Codeforces Round #Pi (Div. 2) C. Geometric Progression
题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...
- Codeforces 567C:Geometric Progression(DP)
time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...
随机推荐
- centos7.0 安装日志--图文具体解释-python开发环境配置
centos7.0公布之后,就下载了everthing的DVD镜像.今天有时间,所以决定在vbox底下体验一番--- 上图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nk ...
- 2015.03.12,外语,读书笔记-《Word Power Made Easy》 10 “如何讨论交谈习惯”学习笔记 SESSION 25
1.about keeping one's mouth shut taciturn,名词形式taciturnity,沉默寡言. 美国第30任总统库里奇,以沉默寡言著称.他来自新英格兰,那里视tacit ...
- 移动端H5页面编辑器开发实战--经验技巧篇
很久前的写的文章了,转载下发到这里 原本地址: https://blog.csdn.net/tech_meizu/article/details/52484775
- ROS-URDF文件标签解读
前言:URDF文件标签解读.margin: auto; width: 700px; height: 100px; ; width: 700px; text-align: center; 一.连杆(li ...
- ROS安装教程
对于ROS的安装,在它的官方网站: http://wiki.ros.org/ROS/Installation 中也有详细说明.但是对于像博主这样先天英语发育不全的人来说,直接看官网还是有点困难的. 所 ...
- SQLiteHelp
using System; using System.Collections.Generic; using System.Text; using System.Data.SQLite; using S ...
- [转]C#多线程和线程池
鸣谢原文:http://www.cnblogs.com/wwj1992/p/5976096.html 1.概念 1.0 线程的和进程的关系以及优缺点 windows系统是一个多线程的操作系统.一个程 ...
- MVC、控件、一般处理程序中的session and cookie
Mvc中: session: if (!string .IsNullOrEmpty(find)) //设置 Session["oip"] = "无锡"; Vie ...
- Android 让系统自动生成缩略图并写入媒体库
MediaStore.Video.Thumbnails.getThumbnail(ContentResolver cr, long origId, int kind, BitmapFactory.Op ...
- sklearn学习4----预处理(1)标准化
一.[标准化]scale: 1.导入模块 from sklearn.preprocessing import scaler 2.作用:直接将给定数据进行标准化 3.使用代码 X_scaled=sca ...