CF 567C(Geometric Progression-map)
1 second
256 megabytes
standard input
standard output
Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and
a sequence a, consisting of n integers.
He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common
ratio k.
A subsequence of length three is a combination of three such indexes i1, i2, i3,
that 1 ≤ i1 < i2 < i3 ≤ n.
That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.
A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.
Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.
The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105),
showing how many numbers Polycarp's sequence has and his favorite number.
The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109)
— elements of the sequence.
Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.
5 2
1 1 2 2 4
4
3 1
1 1 1
1
10 3
1 2 6 2 3 6 9 18 3 9
6
In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.
用map分别找a/k,a*k
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<map>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int n,k;
int a[MAXN];
bool b[MAXN]={0};
int l[MAXN]={0};
int cnt[40],cnt2[40];
ll f[MAXN]={0},f2[MAXN]={0};
map<ll,int> S;
map<ll,int>::iterator it;
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); scanf("%d%d",&n,&k);
For(i,n)
{
scanf("%d",&a[i]);
// while (a[i]%k==0) l[i]++,a[i]/=k;
} For(i,n)
{
if (a[i]%k==0&&S.find(a[i]/k)!=S.end()) f[i]=S[a[i]/k]; it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; }
S.clear(); ForD(i,n)
{
if (S.find((ll)(a[i])*k)!=S.end()) f2[i]=S[((ll)(a[i])*k)];
it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; } ll ans=0;
For(i,n) ans+=f[i]*f2[i];
cout<<ans<<endl; return 0;
}
CF 567C(Geometric Progression-map)的更多相关文章
- CodeForces 567C. Geometric Progression(map 数学啊)
题目链接:http://codeforces.com/problemset/problem/567/C C. Geometric Progression time limit per test 1 s ...
- CF 567C Geometric Progression
题目大意:输入两个整数 n 和 k ,接下来输入n个整数组成的序列.求该序列中三个数 满足条件的子串个数(要求字串由三个整数a,b,c组成,其中 c = k * b = k * k * a). 思路: ...
- Codeforces 567C - Geometric Progression - [map维护]
题目链接:https://codeforces.com/problemset/problem/567/C 题意: 给出长度为 $n$ 的序列 $a[1:n]$,给出公比 $k$,要求你个给出该序列中, ...
- CodeForces 567C Geometric Progression
Geometric Progression Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- Codeforces Round #Pi (Div. 2) C. Geometric Progression map
C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...
- Codeforces 567C Geometric Progression(思路)
题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...
- CodeForces 567C Geometric Progression 类似dp的递推统计方案数
input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...
- map Codeforces Round #Pi (Div. 2) C. Geometric Progression
题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...
- Codeforces 567C:Geometric Progression(DP)
time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...
随机推荐
- Erlang语言入门
Erlang语言入门 下载Erlang,http://www.erlang.org/downloads 安装之后开始菜单中有Erlang图标,打开之后是Erlang Shell,可以定制喜欢的颜色和字 ...
- UFLDL教程笔记及练习答案五(自编码线性解码器与处理大型图像**卷积与池化)
自己主动编码线性解码器 自己主动编码线性解码器主要是考虑到稀疏自己主动编码器最后一层输出假设用sigmoid函数.因为稀疏自己主动编码器学习是的输出等于输入.simoid函数的值域在[0,1]之间,这 ...
- 有关计数问题的DP 划分数
有n个无差别的物品,将它们划分成不超过m组.求出划分方法数模M的余数. 输入: 3 4 10000 输出: 4(1+1+2=1+3=2+2=4) 定义:dp[i][j] = j的i划分的总数 #inc ...
- CodeForcess--609B--The Best Gift(模拟水题)
The Best Gift Time Limit: 2000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submi ...
- Docker+ELK搭建
换了个运行环境,重新搭建一套公司本地内部的ELK,之前也搭过(可访问:https://yanganlin.com/31.html),最近做什么事情都想用Docker,这次也用Docker,还算顺利,没 ...
- Elasticsearch部署异常Permission denied
异常描述 在Linux上部署ElasticSearch时抛出了一个异常如下: log4j:ERROR setFile(null,true) call failed. java.io.FileNotFo ...
- ROS-动态参数
前言:在节点外部改变参数的方式有:参数服务器.服务.主题以及动态参数. 1.新建cfg文件 在chapter2_tutorials包下新建cfg文件夹,在cfg文件夹下新建chapter2.cfg文件 ...
- POJ 2392 DP
题目大意:有一头奶牛要上太空,他有很多种石头,每种石头的高度是hi,但是不能放到ai之上的高度,并且这种石头有ci个 将这些石头叠加起来,问能够达到的最高高度. 题意转载自:http://blog.c ...
- linux 下vim中关于删除某段,某行,或者全部删除的命令
- ZOJ 3019 Puzzle
解题思路:给出两个数列an,bn,其中an,bn中元素的顺序可以任意改变,求an,bn的LCS 因为数列中的元素可以按任意顺序排列,所以只需要求出an,bn中的元素有多少个是相同的即可. 反思:一开始 ...