C. Geometric Progression
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and
a sequence a, consisting of n integers.

He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common
ratio k.

A subsequence of length three is a combination of three such indexes i1, i2, i3,
that 1 ≤ i1 < i2 < i3 ≤ n.
That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

Input

The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105),
showing how many numbers Polycarp's sequence has and his favorite number.

The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109)
— elements of the sequence.

Output

Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

Sample test(s)
input
5 2
1 1 2 2 4
output
4
input
3 1
1 1 1
output
1
input
10 3
1 2 6 2 3 6 9 18 3 9
output
6
Note

In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.


用map分别找a/k,a*k

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<map>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int n,k;
int a[MAXN];
bool b[MAXN]={0};
int l[MAXN]={0};
int cnt[40],cnt2[40];
ll f[MAXN]={0},f2[MAXN]={0};
map<ll,int> S;
map<ll,int>::iterator it;
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); scanf("%d%d",&n,&k);
For(i,n)
{
scanf("%d",&a[i]);
// while (a[i]%k==0) l[i]++,a[i]/=k;
} For(i,n)
{
if (a[i]%k==0&&S.find(a[i]/k)!=S.end()) f[i]=S[a[i]/k]; it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; }
S.clear(); ForD(i,n)
{
if (S.find((ll)(a[i])*k)!=S.end()) f2[i]=S[((ll)(a[i])*k)];
it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; } ll ans=0;
For(i,n) ans+=f[i]*f2[i];
cout<<ans<<endl; return 0;
}

CF 567C(Geometric Progression-map)的更多相关文章

  1. CodeForces 567C. Geometric Progression(map 数学啊)

    题目链接:http://codeforces.com/problemset/problem/567/C C. Geometric Progression time limit per test 1 s ...

  2. CF 567C Geometric Progression

    题目大意:输入两个整数 n 和 k ,接下来输入n个整数组成的序列.求该序列中三个数 满足条件的子串个数(要求字串由三个整数a,b,c组成,其中 c = k * b = k * k * a). 思路: ...

  3. Codeforces 567C - Geometric Progression - [map维护]

    题目链接:https://codeforces.com/problemset/problem/567/C 题意: 给出长度为 $n$ 的序列 $a[1:n]$,给出公比 $k$,要求你个给出该序列中, ...

  4. CodeForces 567C Geometric Progression

    Geometric Progression Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I ...

  5. Codeforces Round #Pi (Div. 2) C. Geometric Progression map

    C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  6. Codeforces 567C Geometric Progression(思路)

    题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...

  7. CodeForces 567C Geometric Progression 类似dp的递推统计方案数

    input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...

  8. map Codeforces Round #Pi (Div. 2) C. Geometric Progression

    题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...

  9. Codeforces 567C:Geometric Progression(DP)

    time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...

随机推荐

  1. thrift java示例

    thrift java示例 使用IntelliJ IDEA作为开发工具: 增加proto文件夹,里面写上sayHello.proto syntax = "proto3"; opti ...

  2. Constraint.constant动画效果

    在autolayout里改动constant时调用animateWithDuration,发现没有动画效果怎么办?在block里加一句[self.view layoutIfNeeded]就OK了

  3. python 学习笔记 12 -- 写一个脚本获取城市天气信息

    近期在玩树莓派,前面写过一篇在树莓派上使用1602液晶显示屏,那么可以显示后最重要的就是显示什么的问题了. 最easy想到的就是显示时间啊,CPU利用率啊.IP地址之类的.那么我认为呢,假设可以显示当 ...

  4. robot framework环境配置

    1.Robot framework的安装 作用:web自动化测试框架. RF框架是基于python 的,所以一定要有python环境.网上可以自行查找. 下载地址:https://pypi.pytho ...

  5. linux含有某字符串的文件

    find .|xargs grep -ri "IBM" -l 只列出文件名:grep -rn "Item" * -l pattern files

  6. 使用神经网络-垃圾邮件检测-LSTM或者CNN(一维卷积)效果都不错【代码有问题,pass】

    from sklearn.feature_extraction.text import CountVectorizer import os from sklearn.naive_bayes impor ...

  7. 10.QT程序框架与connect

    MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent), ui(new Ui::MainWindow) { ui->setup ...

  8. 一名3年工作经验的java程序员应该具备的技能

    一名3年工作经验的Java程序员应该具备的技能,这可能是Java程序员们比较关心的内容.我这里要说明一下,以下列举的内容不是都要会的东西—-但是如果你掌握得越多,最终能得到的评价.拿到的薪水势必也越高 ...

  9. 数组常用API

    内容待添加... //根据分数排名字 //方法1 var students = ['小明','小红','小花'] var scores = {小明:,小红:,小花:} //1 添加分数到student ...

  10. C语言“%”运算符

    C语言中运算符“%”是取余运算符,而非取模运算符.(运算符“%”在C/C++, JAVA中,为取余运算,而在Python中为取模运算) 对于一个C语言取余表达式a % b,设其值为result,有如下 ...