BZOJ 4289: PA2012 Tax(最短路)
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 755 Solved: 240
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 2 5
1 3 2
2 3 1
2 4 4
3 4 8
Sample Output
HINT
Source
这题居然卡long long,也是没谁了
首先一个很显然的思路是暴力拆边
即把每个点每一条入边和每一条出边的两两看做一个点,权值为两边的较大值
但是这样很显然是$O(m^2)$,肯定会GG
所以我们考虑一种神仙操作。
对于一条无向边,我们把它看成两条有向边
然后我们这样构图
1.对于一个点,我们把它的出边从小到大排序
2.枚举每一条边,如果这条边连接着1或者N,那么我们从S连向这条边或者从这条边连向T,权值为该边的权值
3.从改边所对应的入边向该边连一条边,边权为它们的权值
4.枚举每一条出边,从权值较小的向权值较大的连权值为两边差值的边,从权值较大的向权值较小的连权值为0的边
可能这样说不是很清楚,借鉴一下这位大佬的图

#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#define Pair pair<long long,int>
#define F first
#define S second
const int MAXN=*1e6+;
using namespace std;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
struct Edge
{
int u,v,w,nxt;
}E[MAXN];
int headE[MAXN],numE=;
inline void add_edge(int x,int y,int z)
{
E[numE].u=x;
E[numE].v=y;
E[numE].w=z;
E[numE].nxt=headE[x];
headE[x]=numE++;
}
struct node
{
int u,v,w,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y,int z)
{
edge[num].u=x;
edge[num].v=y;
edge[num].w=z;
edge[num].nxt=head[x];
head[x]=num++;
}
int N,M,S,T;
int temp[MAXN];
long long dis[MAXN];
bool vis[MAXN];
void Dijstra()
{
memset(dis,0xf,sizeof(dis));dis[S]=;
priority_queue<Pair>q;
q.push(make_pair(,S));
while(q.size()!=)
{
while(vis[q.top().second]&&q.size()>) q.pop();
long long p=q.top().second;
vis[p]=;
for(int i=head[p];i!=-;i=edge[i].nxt)
if(dis[edge[i].v]>dis[p]+edge[i].w)
dis[edge[i].v]=dis[p]+edge[i].w,
q.push(make_pair(-dis[edge[i].v],edge[i].v));
}
printf("%lld\n",dis[T]);
}
int comp(const int &a,const int &b)
{
return E[a].w<E[b].w;
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
memset(headE,-,sizeof(headE));
memset(head,-,sizeof(head));
N=read();M=read();S=,T=*(M+);
for(int i=;i<=M;i++)
{
int x=read(),y=read(),z=read();
add_edge(x,y,z);
add_edge(y,x,z);
}
for(int i=;i<=N;i++)
{
int tempnum=;
for(int j=headE[i];j!=-;j=E[j].nxt)
temp[++tempnum]=j;
sort(temp+,temp+tempnum+,comp);
for(int j=;j<=tempnum;j++)
{
int x=temp[j],y=temp[j+];
if(E[x].u==)
AddEdge(S,x,E[x].w);
if(E[x].v==N)
AddEdge(x,T,E[x].w);
AddEdge(x^,x,E[x].w);
if(j!=tempnum)
AddEdge(x,y,E[y].w-E[x].w),
AddEdge(y,x,);
}
}
Dijstra();
return ;
}
BZOJ 4289: PA2012 Tax(最短路)的更多相关文章
- BZOJ 4289: PA2012 Tax 差分建图 最短路
https://www.lydsy.com/JudgeOnline/problem.php?id=4289 https://www.cnblogs.com/clrs97/p/5046933.html ...
- ●BZOJ 4289 PA2012 Tax
●赘述题目 算了,题目没有重复的必要. 注意理解:对答案造成贡献的是每个点,就是了. 举个栗子: 对于如下数据: 2 1 1 2 1 答案是 2: ●题解 方法:建图(难点)+最短路. 先来几个链接: ...
- BZOJ.4289.PA2012 Tax(思路 Dijkstra)
题目链接 \(Description\) 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价 ...
- bzoj 4289 PA2012 Tax——构图
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 可以把一个点上的边按权值排序,然后边权小的向第一个比它大的连差值的边,边权大的向第一个 ...
- bzoj 4289: PA2012 Tax
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...
- 【刷题】BZOJ 4289 PA2012 Tax
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...
- BZOJ 4289: PA2012 Tax Dijkstra + 查分
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...
- [BZOJ4289][PA2012]TAX(最短路)
首先考虑一种暴力做法,为每条边拆成两条有向边,各建一个点.若某两条边有公共点,则在边所对应的点之间连一条边,权值为两条边中的较大值.这样跑最短路是$O(m^2\log m)$的. 用类似网络流中补流的 ...
- [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec Memo ...
随机推荐
- 基本类型转换成NSNumber类型
int i=100; float f=2.34; NSNumber *n1=[NSNumber numberWithInt:i]; NSNumber *n2=[NSNumber numberWithF ...
- Flask-上传文件和访问上传的文件
1.1.上传文件和访问上传的文件 upload_file_demo.py from flask import Flask,request,render_template import os from ...
- BZOJ 3238 后缀数组+单调栈
单调栈跑两遍求出来 ht[i]为最小值的那段区间 //By SiriusRen #include <cstdio> #include <cstring> #include &l ...
- 淘宝druid报错:javax.management.InstanceNotFoundException: com.alibaba.druid:type=DruidDataSourceStat
问题: 启动tomcat报错: Tomat报出一下异常:ERROR [com.alibaba.druid.stat.DruidDataSourceStatManager] – unregister m ...
- Chrome 开发工具系列
- Java 多线程(二)synchronized和volatile
脏读: 脏读指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这个数据.总的来说取到的数据是其实是被更改过的,但还没有保存到数 ...
- 杭电 4508 湫湫系列故事——减肥记I【完全背包】
解题思路:因为食物是可以随便吃的,所以是完全背包,卡路里代表消耗,幸福感代表价值,套公式就可以做了. Problem Description 对于吃货来说,过年最幸福的事就是吃了,没有之一! 但是对于 ...
- iOS 处理图片的一些小 Tip
UIImage 缓存是怎么回事? 通过 imageNamed 创建 UIImage 时,系统实际上只是在 Bundle 内查找到文件名,然后把这个文件名放到 UIImage 里返回,并没有进行实际的文 ...
- 这个夏天有你,有CorelDRAW X7,有理想,有设计!
CorelDRAW是加拿大Corel公司出品的一款功能全面的矢量绘图.平面设计软件,兼有图形设计的简易操作性和图像编辑的强大功能.目前,被广泛应用于广告宣传.艺术作品.纺织业等各个行业.和Photos ...
- CentOS 6.5下部署日志服务器 Rsyslog+LogAnalyzer+MySQL
简介 LogAnalyzer 是一款syslog日志和其他网络事件数据的Web前端.它提供了对日志的简单浏览.搜索.基本分析和一些图表报告的功能.数据可以从数据库或一般的syslog文本文件中获取,所 ...