caioj 1161 欧拉函数3:可见点数
(x, y)被看到仅当x与y互质
由此联想到欧拉函数
x=y是1个点,然后把正方形分成两半,一边是φ(n)
所以答案是2*∑φ(n)+1
#include<cstdio>
#include<cctype>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std;
typedef long long ll;
const int MAXN = 1123;
ll euler[MAXN];
void get_euler()
{
_for(i, 1, MAXN) euler[i] = i;
_for(i, 2, MAXN)
{
if(euler[i] == i)
for(int j = i; j <= MAXN; j += i)
euler[j] = euler[j] / i * (i - 1);
euler[i] += euler[i-1];
}
}
void read(ll& x)
{
int f = 1; x = 0; char ch = getchar();
while(!isdigit(ch)) { if(ch == '-1') f = -1; ch = getchar(); }
while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); }
x *= f;
}
int main()
{
get_euler();
ll n; read(n);
_for(i, 1, n)
{
ll x; read(x);
printf("%d %lld %lld\n", i, x, 2 * euler[x] + 1);
}
return 0;
}
caioj 1161 欧拉函数3:可见点数的更多相关文章
- poj1284 && caioj 1159 欧拉函数1:原根
这道题不知道这个定理很难做出来. 除非暴力找规律. 我原本找的时候出了问题 暴力找出的从13及以上的答案就有问题了 因为13的12次方会溢出 那么该怎么做? 快速幂派上用场. 把前几个素数的答案找出来 ...
- caioj 1158 欧拉函数
直接套模板,这道题貌似单独求还快一些 解法一 #include<cstdio> #include<cctype> #define REP(i, a, b) for(int i ...
- Reflect(欧拉函数)
Reflect Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- POJ 3090 Visible Lattice Points 【欧拉函数】
<题目链接> 题目大意: 给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点. 解题分析:很明显,因为 N (1 ≤ N ≤ 1000) ,所以无论 N 为多 ...
- 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...
- 「10.10」神炎皇(欧拉函数)·降雷皇(线段树,DP)·幻魔皇
A. 神炎皇 很好的一道题,可能第一次在考场上遇到欧拉函数 题意:对于一个整数对 $(a,b)$,若满足 $a\times b\leq n$且$a+b$是$a\times b$的因子, 则称为神奇的数 ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- 路飞学城Python-Day32【小结】
import socket from multiprocessing import Process def talk(conn): while True: try: data = conn.recv( ...
- SQL日期数据格式的处理
sql server2000中使用convert来取得datetime数据类型样式(全) 日期数据格式的处理,两个示例: CONVERT(varchar(16), 时间一, 20) 结果:2007-0 ...
- PAT 天梯赛练习集 L1-006. 连续因子
题目链接:https://www.patest.cn/contests/gplt/L1-006 一个正整数N的因子中可能存在若干连续的数字.例如630可以分解为3*5*6*7,其中5.6.7就是3个连 ...
- HDU 1757 A Simple Math Problem( 矩阵快速幂 )
<font color = red , size = '4'>下列图表转载自 efreet 链接:传送门 题意:给出递推关系,求 f(k) % m 的值, 思路: 因为 k<2 * ...
- KindEditor 上传图片浏览器兼容性问题
1.使用 KindEditor 的图片上传插件时,需要返回如下格式的 JSON 数据 //成功时 { "error" : 0, "url" : "ht ...
- 菜鸟学Struts——I18N对国际化的支持
大家肯定都喜欢玩游戏吧. 对于是一个游戏迷的话,肯定玩过不少很棒的经典单机游戏.比方说,国产的<古墓丽影>.<刺客信条>.<鬼泣>国产的仙剑.古剑等.在众多游戏系列 ...
- Oracle分析函数ntile
有这么一个需求.将课程的成绩分成四个等级,为学生打A.B.C.D的绩效. drop table course purge; create table course ( id number, g ...
- c# 获取文件夹下面所有文件夹列表
方法一: string dirPath = @"D:\App1"; List<string> dirs = new List<string>(Directo ...
- ThinkPHP5.0框架开发--第6章 TP5.0 请求和响应
ThinkPHP5.0框架开发--第6章 TP5.0 请求和响应 第6章 TP5.0 请求和响应 ===================================== 上次复习 1.新建控制器 ...
- ElasticSearch 深入理解 三:集群部署设计
ElasticSearch 深入理解 三:集群部署设计 ElasticSearch从名字中也可以知道,它的Elastic跟Search是同等重要的,甚至以Elastic为主要导向. Elastic即可 ...