bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)
1831: [AHOI2008]逆序对
Description
Input
Output
Sample Input
4 2 -1 -1 3
Sample Output
HINT
4 2 4 4 3中有4个逆序对。当然,也存在其它方案得到4个逆序对。
数据范围:
100%的数据中,N<=10000,K<=100。
60%的数据中,N<=100。
40%的数据中,-1出现不超过两次。
题解:
1、1~i-1和j+1~n中的数与x,y构成的逆序对数不变。
2、i+1~j-1中大于x的数或者小于y的数与x,y构成的逆序对数不变。
3、i+1~j-1中在y~x范围内的数与x,y构成的逆序对数减少。
那么看到这里我们就可以发现,如果我们在i和j这两个位置分别填了x,y这两个数,那么只有x<y时得到的解才是最优的!
自然而然-转移方程:f[i][j]=s[i-1][j]+hf[i][j];
s[i][j]表示的就是f[i][1]~f[i][j]解的最小值
hf[i][j]表示的就是在第i个位置填入j之后所产生的逆需对(这个很明显就可以预处理嘛~)
但是我们需要把hf数组分成两个部分:
q[11000][110];//表示第i个位置填了j之后,1~i有多少个逆序对——顺推
h[11000][110];//表示第i个位置填了j之后,i~n有多少个逆序对(对于后面不是-1的数来说)——逆推
说到这里就可以了,AC~~~
PS:双倍经验!!!bzoj1786
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
inline int read()
{
int f=,x=;char ch;
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
int n,k,last;
int a[],b[];
int f[][];//表示第i个-1填j的逆序对数最小(1<=j<=k && 保证序列中填的一定是一个上升序列所得的解才为最优)
int q[][];//表示第i个位置填了j之后,1~i有多少个逆序对——顺推
int h[][];//表示第i个位置填了j之后,i~n有多少个逆序对(对于后面不是-1的数来说)——逆推
int s[][];//表示f[i][1]~f[i][j]解的最小值
//方程:f[i][j]=s[i-1][j]+hf[i][j];
int main()
{
//freopen("1831.in","r",stdin);
//freopen("1831.out","w",stdout);
n=read(),k=read();int sum=;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
if(a[i]==-)b[++sum]=i;
} //预处理: //前
for(int i=;i<=n;i++)
for(int j=;j<=k;j++)
{
int ss=;
if(a[i]>j)ss=;
q[i][j]=q[i-][j]+ss;
} //后
for(int i=n;i>=;i--)
for(int j=;j<=k;j++)
{
int ss=;
if(a[i]!=- && a[i]<j)ss=;
h[i][j]=h[i+][j]+ss;
} memset(f,,sizeof(f));
for(int i=;i<=sum;i++)
{
f[i][]=f[i-][]+q[b[i]][]+h[b[i]][];
s[i][]=f[i][];
for(int j=;j<=k;j++)
{
f[i][j]=s[i-][j]+q[b[i]][j]+h[b[i]][j];
s[i][j]=min(s[i][j-],f[i][j]);
}
} int ans=;
for(int i=;i<=k;i++)ans=min(ans,f[sum][i]);
for(int i=;i<=n;i++)if(a[i]!=-)ans+=q[i][a[i]];
printf("%d\n",ans);
return ;
}
bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)的更多相关文章
- BZOJ1831: [AHOI2008]逆序对
1831: [AHOI2008]逆序对 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 341 Solved: 226[Submit][Status] ...
- 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)
题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...
- 【BZOJ1831】[AHOI2008]逆序对(动态规划)
[BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\) ...
- BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对
这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...
- [AHOI2008]逆序对(dp)
小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为 ...
- bzoj1786: [Ahoi2008]Pair 配对&&1831: [AHOI2008]逆序对
一个自以为很对的东西,我们往-1放的数肯定是不增的. 然后就预处理一下,假如i这个位置放j会多多少逆序对. DP一下,我的复杂度应该是O(n*m^2)的,然而你随便搞都能省掉一个m吧,我算了算好像可以 ...
- bzoj1831 逆序对 (dp+树状数组)
注意到,所有的-1应该是一个不降的序列,否则不会更优那就先求出来不是-1的的逆序对个数,然后设f[i][j]表示第i个-1放成j的前i个-1带来的最小逆序对数量这个可以树状数组来求 #include& ...
- 【BZOJ】1831: [AHOI2008]逆序对
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...
- 【[AHOI2008]逆序对】
被锤爆了 被这个题搞得自闭了一上午,觉得自己没什么前途了 我又没有看出来这个题的一个非常重要的性质 我们填进去的数一定是单调不降的 首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对 ...
随机推荐
- POJ 3071
求概率.其实跟枚举差不多,输入n即是要进行n轮比赛.对每一支球队,设求1的概率,首先1要与2比赛为p1,这是第一轮,第二轮时,1要与3(打败3为p2),4(打败4为p3)中胜者比赛,由于是概率,则两者 ...
- LeetCode——Pascal's Triangle II
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3 ...
- html5中调用摄像头拍照
方法: getCamera: 获取摄像头管理对象 对象: Camera: 摄像头对象 CameraOption: JSON对象.调用摄像头的參数 PopPosition: JSON对象,弹出拍照或摄像 ...
- Codeforces 13C Sequence dp
题目链接:http://codeforces.com/problemset/problem/13/C 题意: 给定n长的序列 每次操作能够给每一个数++或-- 问最少须要几步操作使得序列变为非递减序列 ...
- python写个简单的文件上传是有多难,要么那么复杂,要么各种,,,老子来写个简单的
def upload(url,params): ''' 上传文件到server,不适合大文件 @params url 你懂的 @params {"action":"xxx ...
- R学习小计
安装R扩展包:install.packages("FKF")http://www.douban.com/note/243004605/1.输入数据 l读入有分隔符数据:A<- ...
- 【DNN】 安装问题
http://blog.csdn.net/hwt0101/article/details/9153083 这是IIS 注册的问题 IIS 在安装VS 之前就装上了,所以 没有注册是上 F4 从新卸载 ...
- Date日期类 Calendar日历类 完成可视化日历
package com.test; import java.text.DateFormat; import java.text.ParseException; import java.text.Sim ...
- Maven配置文件中配置指定JDK版本
1. 在setting.xml文件中的<profiles>标签加入如下配置: <profile> <id>jdk-1.8</id> <activa ...
- 关于注意力机制(《Attention is all you need》)
深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列.(https://kexue.fm/archives/4765) 第一个思路是RNN层,递归进行,但是RNN无法很好地 ...