BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数
emmm.......
数学题都不友好QAQ......
Code:
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 50080
const long long inf = 1844387848;
#define ll long long
using namespace std;
int mu[maxn],vis[maxn],prime[maxn],tot;
int main(){
//setIO("input");
mu[1]=1;
for(int i=2;i<maxn;++i) {
if(!vis[i]) prime[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&(ll)prime[j]*i < (ll) maxn; ++j) {
vis[prime[j]*i] = 1;
if(i % prime[j]==0) { mu[prime[j]*i] = 0; break; }
mu[prime[j]*i] = -mu[i];
}
}
int T;
long long k;
long long l,r,ans;
scanf("%d",&T);
while(T--){
scanf("%lld",&k);
l=1,r=inf,ans=0;
while(l <= r) {
long long mid=(l+r)>>1;
long long tmp=0;
for(ll i=1;i*i<=mid;++i)
tmp+=mu[i]*(mid/(i*i)) ;
if(tmp>=k) r = mid-1,ans=mid;
else l = mid + 1;
}
printf("%lld\n",ans);
}
return 0;
}
BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数的更多相关文章
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4920 Solved: 2389[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- BZOJ2440 [中山市选2011]完全平方数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 【学术篇】bzoj2440 [中山市选2011]完全平方数
-题目の传送门- 题目大意: 找到第k个无平方因子数. 看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法. 考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个 ...
- BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...
随机推荐
- bzoj 1293: [SCOI2009]生日礼物 问题转化 + 性质分析 + 滚动数组优化
Description 小西有一条很长的彩带,彩带上挂着各式各样的彩珠.已知彩珠有N个,分为K种.简单的说,可以将彩带考虑为x轴,每一个彩珠有一个对应的坐标(即位置).某些坐标上可以没有彩珠,但多个彩 ...
- [LUOGU2730] 魔板
搜索水题.因为只有8个数,排列一共有40320种,直接bfs,判重就行了. 但是判重的时候直接用8进制表示的话要88的bool数组.这种操作太low了,于是我们可以用康托展开,降成8!. 康托展开其实 ...
- 探索Python的多态是怎么实现的
多态是指通过基类的指针或者引用,在运行时动态调用实际绑定对象函数的行为. 对于其他如C++的语言,多态是通过在基类的函数前加上virtual关键字,在派生类中重写该函数,运行时将会根据对象的实际类型来 ...
- 《黑白团团队》第八次团队作业:Alpha冲刺 第四天
项目 内容 作业课程地址 任课教师首页链接 作业要求 团队项目 填写团队名称 黑白团团队 填写具体目标 认真负责,完成项目 团队项目Github仓库地址链接. 第四天 日期:2019/6/18 成员 ...
- JSON 基础学习1
http://www.360doc.com/content/10/0809/22/2633_44873063.shtml JSON转字符串: json.stringify(jsonobj); 字符串转 ...
- 如何用Vim提高开发效率
即可 ●输入m获取到文章目录 推荐↓↓↓ C/C++编程 更多推荐<18个技术类公众微信> 涵盖:程序人生.算法与数据结构.黑客技术与网络安全.大数据技术.前端开发.Java.Python ...
- 判断webservice是否可用
在.net中验证WebService的Url有效并且验证服务可用: 需要用到win32下的组件,比如Microsoft XML, v5.0 测试程序具体如下:建一个项目,在你的引用中添加COM---找 ...
- Spring Boot由jar包转成war包
Spring Boot由jar包转成war包 spring boot 默认是以jar包形式启动web程序,在新建spring boot项目时候可以选择war包的启动方式. 建议在开发的时候建立以jar ...
- Oracle里schema理解
在Oracle中,一个用户就是一个Schema,表都是建立在Schema中的,也可以理解为每个用户拥有不同的表.一个用户想访问另外一个用户,也就是另外一个schema的表的时候,可以用 usernam ...
- Linux下I/O复用 Select与Poll
Select #include <sys/time.h>#include <sys/types.h>#include <sys/unistd.h> int sele ...