TF.LSTM实现
感悟:耗时最多的就是数据格式整理,其本身并不复杂
NN-LSTM-NN-SOFTMAX
数据格式:batch_size =>批大小,n_steps=>要建立多少lstm
0.原始输入数据格式:batch_size,n_steps,data_size
1.合并数据,准备NN:batch_size*n_steps,data_size
2.通过NN后: batch_size*n_steps,hidden_unit
3.准备进入LSTM:batch_size,n_steps,hidden_unit
4.lstm=tf.contrib.rnn.BasicLSTMCell(hidden_unit,forget_bias=1.0,state_is_tuple=True)
5.构建多层的lstm(层数为lstm_layers):cell=tf.contrib.rnn.MultiRNNCell([lstm]*lstm_layers)
6.init_state=lstm.zero_state(batch_size,tf.float32)
7.output,state=tf.nn.dynamic_rnn(lstm,lstm_in,time_major=False,dtype=tf.float32,initial_state=init_state)
这里需要注意time_major=False,对应的输入格式为batch_size,n_steps,hidden_unit。调整格式输入数据格式,等于true时,无论如何训练结果都有问题?
8.解开output为list(batch_size,outputs,n_steps),output的数据格式为(outputs, batch_size,n_steps ):
tf.unstack(value=, axis=)将value安装axis的维度展开和tf.split(axis=, num_or_size_splits, value=)+reshape()相似(利用reshape将1抹掉,降低一个维度)
output=tf.unstack(tf.transpose(output,[1,0,2]))
9.取最后一个output:y=tf.matmul(output[-1],weights['out'])+bias['out’]
10.计算交叉熵:loss=tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=y,labels=y。_) )
作者:J_Y_Peng
链接:https://www.jianshu.com/p/9cf7ea16e7af
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
TF.LSTM实现的更多相关文章
- 深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)
问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse) # 构建 ...
- tf实现LSTM时rnn.DropoutWrapper
转自:https://blog.csdn.net/abclhq2005/article/details/78683656 作者:abclhq2005 1.概念介绍 所谓dropout,就是指网络中每个 ...
- 学习笔记TF035:实现基于LSTM语言模型
神经结构进步.GPU深度学习训练效率突破.RNN,时间序列数据有效,每个神经元通过内部组件保存输入信息. 卷积神经网络,图像分类,无法对视频每帧图像发生事情关联分析,无法利用前帧图像信息.RNN最大特 ...
- tf.variable和tf.get_Variable以及tf.name_scope和tf.variable_scope的区别
在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变 ...
- 芝麻HTTP:TensorFlow LSTM MNIST分类
本节来介绍一下使用 RNN 的 LSTM 来做 MNIST 分类的方法,RNN 相比 CNN 来说,速度可能会慢,但可以节省更多的内存空间. 初始化 首先我们可以先初始化一些变量,如学习率.节点单元数 ...
- TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为 ...
- TensorFlow之RNN:堆叠RNN、LSTM、GRU及双向LSTM
RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统 ...
- Tensorflow之基于LSTM神经网络写唐诗
最近看了不少关于写诗的博客,在前人的基础上做了一些小的改动,因比较喜欢一次输入很长的开头句,所以让机器人输出压缩为一个开头字生成两个诗句,写五言和七言诗,当然如果你想写更长的诗句是可以继续改动的. 在 ...
- tensorflow-RNN和LSTM
本章主要介绍循环神经网络(recurrent neuralnetwork,RNN)和长短时记忆网络(long short-term memory,LSTM) 一. RNN简介 1.背景 循环神经网络挖 ...
随机推荐
- Linux开放1521端口允许网络连接Oracle Listener
症状: 1. TCP/IP连接是通的.可以用ping 命令测试. 2. 服务器上Oracle Listener已经启动. lsnrctl status 查看listener状态 lsnrct ...
- (三)Fegin声明式服务调用
上一篇,讲了SpringClound中的消费者采用Ribbon+Rest来实现,这回我们用组件Feign来实现服务的消费者,Fegin中也是默认集成了Ribbon的;和Eureka结合也能实现负载均衡 ...
- 关于github里readme编辑的方法
实验室的老师昨天改完论文发我后,说按照例子改.于是才发现github里readme编辑满满的极客思维. 看了一下csdn给的教程 https://blog.csdn.net/Kaitiren/arti ...
- Android Handling back press when using fragments in Android
In MainActivity: getSupportFragmentManager().beginTransaction().replace(R.id.gif_contents, gifPageTw ...
- split(":")[0].substring(1)
java中拆分字符中的split(":")[0].substring(1)是什么意思啊,尤其[0] 可以解释一下吗?:比如你有一个字符串 "111:222:333&quo ...
- Linux部署之批量自动安装系统之测试篇
1. 客户端从网络启动如下 2. 复制vesamenu.c32文件可解决上面的问题 3. 客户端再次启动 4. 选择第一个进 ...
- Thread Control Block
Thread Control Block The following is the declaration of the Thread Control Block. struct tcb { u32_ ...
- SQL 自动记录存储过程,表,函数的创建修改和删除 -相当于SVN一样
在项目开发过程中,项目管理者通常都很希望对项目的开发进展有一个日志的记录.代码的记录和管理可以通过TFS或者VSS等工具去管理.但是数据库却没有记录开发日志这一功能.这在实际开发中很不方便, ...
- 虚拟机创建后该如何获取IP地址并访问互联网实用教程
之前在做项目的时候主机IP地址.网关.DNS.子网掩码等都是公司或者对方直接给提供的,但是如果我们自己想搭建一台虚拟机或者一台集群的话,手头又没有IP地址,该肿么办呢? 白慌,这里介绍一个小技巧, ...
- 手把手教你如何新建scrapy爬虫框架的第一个项目(下)
前几天小编带大家学会了如何在Scrapy框架下创建属于自己的第一个爬虫项目(上),今天我们进一步深入的了解Scrapy爬虫项目创建,这里以伯乐在线网站的所有文章页为例进行说明. 在我们创建好Scrap ...