题目链接:https://cn.vjudge.net/problem/POJ-3159

题意

给出一组不等式

求第一个变量和最后一个变量可能的最大差值

数据保证有解

思路

一个不等式a-b<=c,通过移项,实际上就是满足了a<=b+c

发现在整个约束系统中,a在下满足不等式的情况下求最大值,就是在求最短路

然而如果直接用BellmanFord(spfa)的话,还是会超时

这时得对Bellman做第二次优化,用stack代替queue

但是对于更多的图中,Dijsktra依然更优,所以没有必要太过考虑这个问题?

代码

Dijkstra

#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=3e4+20, maxm=15e4+20, INF=0x3f3f3f3f;
typedef pair<int, int> Node;
struct Cmp{
bool operator () (const Node &a, const Node &b){
return a.first>b.first;
}
};
struct Edge{
int to, dis, next;
}edges[maxm+5];
int head[maxn+5], size=0; void addEdge(int from, int to, int dis){
edges[size]=Edge{to, dis, head[from]};
head[from]=size++;
} void init(void){
memset(head, -1, sizeof(head));
size=0;
} int Bellman(int n){
int dist[maxn+5], sta[maxn+5], top=0;//cnt[maxn+5];
bool inq[maxn+5]={false};
// queue<int> que; memset(dist, INF, sizeof(dist)); dist[1]=0;
sta[top++]=1;
while (top!=0){
int from=sta[--top];
inq[from]=false; for (int i=head[from]; i!=-1; i=edges[i].next){
Edge &e=edges[i];
int &to=e.to, &dis=e.dis; if (dist[to]<=dist[from]+dis) continue;
dist[to]=dist[from]+dis; if (inq[to]) continue;
sta[top++]=to; inq[to]=true;
}
}return dist[n];
} int Dij(int n){
int dist[maxn+5];
priority_queue<Node, vector<Node>, Cmp> que; memset(dist, INF, sizeof(dist)); dist[1]=0;
que.push(Node(dist[1], 1));
while (que.size()){
Node x=que.top(); que.pop();
if (x.first!=dist[x.second]) continue; int &from=x.second;
for (int i=head[from]; i!=-1; i=edges[i].next){
Edge &e=edges[i];
int &to=e.to, &dis=e.dis; if (dist[to]<=dist[from]+dis) continue;
dist[to]=dist[from]+dis;
que.push(Node(dist[to], to));
}
}return dist[n];
} int main(void){
int n, m, from, to, dis; init();
scanf("%d%d", &n, &m);
for (int i=0; i<m; i++){
scanf("%d%d%d", &from, &to, &dis);
addEdge(from, to, dis);
}printf("%d\n", Dij(n));//Bellman(n)); return 0;
}
Time Memory Length Lang Submitted
532ms 2568kB 1960 G++ 2018-05-27 00:47:58

BellmanFord

#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=3e4+20, maxm=15e4+20, INF=0x3f3f3f3f;
struct Edge{
int to, dis, next;
}edges[maxm+5];
int head[maxn+5], size=0; void addEdge(int from, int to, int dis){
edges[size]=Edge{to, dis, head[from]};
head[from]=size++;
} void init(void){
memset(head, -1, sizeof(head));
size=0;
} int Bellman(int n){
int dist[maxn+5], sta[maxn+5], top=0;//cnt[maxn+5];
bool inq[maxn+5]={false};
// queue<int> que; memset(dist, INF, sizeof(dist)); dist[1]=0;
sta[top++]=1;
while (top!=0){
int from=sta[--top];
inq[from]=false; for (int i=head[from]; i!=-1; i=edges[i].next){
Edge &e=edges[i];
int &to=e.to, &dis=e.dis; if (dist[to]<=dist[from]+dis) continue;
dist[to]=dist[from]+dis; if (inq[to]) continue;
sta[top++]=to; inq[to]=true;
}
}return dist[n];
} int main(void){
int n, m, from, to, dis; init();
scanf("%d%d", &n, &m);
for (int i=0; i<m; i++){
scanf("%d%d%d", &from, &to, &dis);
addEdge(from, to, dis);
}printf("%d\n", Bellman(n)); return 0;
}
Time Memory Length Lang Submitted
485ms 2108kB 1220 G++ 2018-05-27 00:39:53

POJ-3159 Candies 最短路应用(差分约束)的更多相关文章

  1. POJ 3159 Candies 解题报告(差分约束 Dijkstra+优先队列 SPFA+栈)

    原题地址:http://poj.org/problem?id=3159 题意大概是班长发糖果,班里面有不良风气,A希望B的糖果不比自己多C个.班长要满足小朋友的需求,而且要让自己的糖果比snoopy的 ...

  2. POJ 3159 Candies(spfa、差分约束)

    Description During the kindergarten days, flymouse was the monitor of his class. Occasionally the he ...

  3. POJ 3159 Candies (图论,差分约束系统,最短路)

    POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...

  4. POJ 3159 Candies(差分约束,最短路)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 20067   Accepted: 5293 Descrip ...

  5. Candies POJ - 3159 (最短路+差分约束)

    During the kindergarten days, flymouse was the monitor of his class. Occasionally the head-teacher b ...

  6. POJ 3159 Candies(差分约束+最短路)题解

    题意:给a b c要求,b拿的比a拿的多但是不超过c,问你所有人最多差多少 思路:在最短路专题应该能看出来是差分约束,条件是b - a <= c,也就是满足b <= a + c,和spfa ...

  7. POJ 3159 Candies(SPFA+栈)差分约束

    题目链接:http://poj.org/problem?id=3159 题意:给出m给 x 与y的关系.当中y的糖数不能比x的多c个.即y-x <= c  最后求fly[n]最多能比so[1] ...

  8. POJ 3159 Candies(差分约束+spfa+链式前向星)

    题目链接:http://poj.org/problem?id=3159 题目大意:给n个人派糖果,给出m组数据,每组数据包含A,B,C三个数,意思是A的糖果数比B少的个数不多于C,即B的糖果数 - A ...

  9. 图论--差分约束--POJ 3159 Candies

    Language:Default Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 43021   Accep ...

  10. POJ 3159 Candies 差分约束dij

    分析:设每个人的糖果数量是a[i] 最终就是求a[n]-a[1]的最大值 然后给出m个关系 u,v,c 表示a[u]+c>=a[v] 就是a[v]-a[u]<=c 所以对于这种情况,按照u ...

随机推荐

  1. hook的本质就是在本原可执行文件中加东西

    hook的本质就是在本原可执行文件中加东西. 本质就是添加东西:

  2. Python内置数据结构之字典dict

    1. 字典 字典是Python中唯一的内置映射类型,其中的值不按顺序排列,而是存储在键下.键可能是数(整数索引).字符串或元组.字典(日常生活中的字典和Python字典)旨在让你能够轻松地找到特定的单 ...

  3. day13 基本的文件操作(好东西)

    目录 基本的文件处理 什么是文件 如何使用文件 使用Python写一个小程序控制文件 open(打开文件) read: readline:一次性读取一行 del:删除 close:关闭 write(写 ...

  4. Python的流程控制

    条件判断 通过`if`,`elif`,`else`关键字来实现条件判断逻辑的实现,执行改结构中的其中一个,其结构如下: if condition1: pass elif condition2: pas ...

  5. 小程序--wepy省市区三级联动选择

    产品老哥对项目再一次进行关爱, 新增页面, 新增需求, 很完美........ 不多说, 记录一下新增东西中的省市区联动选择, (这里全国地区信息是在本地, 但不建议这么做, 因为js文件太大.. 建 ...

  6. docker删除docker_gwbridge网桥

    最后更新时间:2018年12月26日 使用命令:docker network rm docker_gwbridge 提示无法删除. [root@localhost ~]# docker network ...

  7. html全屏显示

    JavaScript代码: function toggleFullScreen() { if (!document.fullscreenElement && // alternativ ...

  8. React和Vue中,是如何监听变量变化的

    React 中事件监听 本地调试React代码的方法 先将React代码下载到本地,进入项目文件夹后yarn build 利用create-react-app创建一个自己的项目 把react源码和自己 ...

  9. elementUI 日期时间选择器el-date-picker开始时间与结束时间约束

    主要思路:el-date-picker组件需要 :picker-options属性,属性值为data,data的数据来自于methods中的方法. ##template代码 <el-form-i ...

  10. NYIST 489 哭泣天使

    哭泣天使时间限制:1000 ms | 内存限制:65535 KB难度:5 描述Doctor Who乘着Tardis带着Amy来到了一个星球,一开Tadis大门,发现这个星球上有个壮观的石像群,全是一些 ...