POJ-3159 Candies 最短路应用(差分约束)
题目链接:https://cn.vjudge.net/problem/POJ-3159
题意
给出一组不等式
求第一个变量和最后一个变量可能的最大差值
数据保证有解
思路
一个不等式a-b<=c,通过移项,实际上就是满足了a<=b+c
发现在整个约束系统中,a在下满足不等式的情况下求最大值,就是在求最短路
然而如果直接用BellmanFord(spfa)的话,还是会超时
这时得对Bellman做第二次优化,用stack代替queue
但是对于更多的图中,Dijsktra依然更优,所以没有必要太过考虑这个问题?
代码
Dijkstra
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=3e4+20, maxm=15e4+20, INF=0x3f3f3f3f;
typedef pair<int, int> Node;
struct Cmp{
bool operator () (const Node &a, const Node &b){
return a.first>b.first;
}
};
struct Edge{
int to, dis, next;
}edges[maxm+5];
int head[maxn+5], size=0;
void addEdge(int from, int to, int dis){
edges[size]=Edge{to, dis, head[from]};
head[from]=size++;
}
void init(void){
memset(head, -1, sizeof(head));
size=0;
}
int Bellman(int n){
int dist[maxn+5], sta[maxn+5], top=0;//cnt[maxn+5];
bool inq[maxn+5]={false};
// queue<int> que;
memset(dist, INF, sizeof(dist)); dist[1]=0;
sta[top++]=1;
while (top!=0){
int from=sta[--top];
inq[from]=false;
for (int i=head[from]; i!=-1; i=edges[i].next){
Edge &e=edges[i];
int &to=e.to, &dis=e.dis;
if (dist[to]<=dist[from]+dis) continue;
dist[to]=dist[from]+dis;
if (inq[to]) continue;
sta[top++]=to; inq[to]=true;
}
}return dist[n];
}
int Dij(int n){
int dist[maxn+5];
priority_queue<Node, vector<Node>, Cmp> que;
memset(dist, INF, sizeof(dist)); dist[1]=0;
que.push(Node(dist[1], 1));
while (que.size()){
Node x=que.top(); que.pop();
if (x.first!=dist[x.second]) continue;
int &from=x.second;
for (int i=head[from]; i!=-1; i=edges[i].next){
Edge &e=edges[i];
int &to=e.to, &dis=e.dis;
if (dist[to]<=dist[from]+dis) continue;
dist[to]=dist[from]+dis;
que.push(Node(dist[to], to));
}
}return dist[n];
}
int main(void){
int n, m, from, to, dis;
init();
scanf("%d%d", &n, &m);
for (int i=0; i<m; i++){
scanf("%d%d%d", &from, &to, &dis);
addEdge(from, to, dis);
}printf("%d\n", Dij(n));//Bellman(n));
return 0;
}
| Time | Memory | Length | Lang | Submitted |
|---|---|---|---|---|
| 532ms | 2568kB | 1960 | G++ | 2018-05-27 00:47:58 |
BellmanFord
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=3e4+20, maxm=15e4+20, INF=0x3f3f3f3f;
struct Edge{
int to, dis, next;
}edges[maxm+5];
int head[maxn+5], size=0;
void addEdge(int from, int to, int dis){
edges[size]=Edge{to, dis, head[from]};
head[from]=size++;
}
void init(void){
memset(head, -1, sizeof(head));
size=0;
}
int Bellman(int n){
int dist[maxn+5], sta[maxn+5], top=0;//cnt[maxn+5];
bool inq[maxn+5]={false};
// queue<int> que;
memset(dist, INF, sizeof(dist)); dist[1]=0;
sta[top++]=1;
while (top!=0){
int from=sta[--top];
inq[from]=false;
for (int i=head[from]; i!=-1; i=edges[i].next){
Edge &e=edges[i];
int &to=e.to, &dis=e.dis;
if (dist[to]<=dist[from]+dis) continue;
dist[to]=dist[from]+dis;
if (inq[to]) continue;
sta[top++]=to; inq[to]=true;
}
}return dist[n];
}
int main(void){
int n, m, from, to, dis;
init();
scanf("%d%d", &n, &m);
for (int i=0; i<m; i++){
scanf("%d%d%d", &from, &to, &dis);
addEdge(from, to, dis);
}printf("%d\n", Bellman(n));
return 0;
}
| Time | Memory | Length | Lang | Submitted |
|---|---|---|---|---|
| 485ms | 2108kB | 1220 | G++ | 2018-05-27 00:39:53 |
POJ-3159 Candies 最短路应用(差分约束)的更多相关文章
- POJ 3159 Candies 解题报告(差分约束 Dijkstra+优先队列 SPFA+栈)
原题地址:http://poj.org/problem?id=3159 题意大概是班长发糖果,班里面有不良风气,A希望B的糖果不比自己多C个.班长要满足小朋友的需求,而且要让自己的糖果比snoopy的 ...
- POJ 3159 Candies(spfa、差分约束)
Description During the kindergarten days, flymouse was the monitor of his class. Occasionally the he ...
- POJ 3159 Candies (图论,差分约束系统,最短路)
POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...
- POJ 3159 Candies(差分约束,最短路)
Candies Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 20067 Accepted: 5293 Descrip ...
- Candies POJ - 3159 (最短路+差分约束)
During the kindergarten days, flymouse was the monitor of his class. Occasionally the head-teacher b ...
- POJ 3159 Candies(差分约束+最短路)题解
题意:给a b c要求,b拿的比a拿的多但是不超过c,问你所有人最多差多少 思路:在最短路专题应该能看出来是差分约束,条件是b - a <= c,也就是满足b <= a + c,和spfa ...
- POJ 3159 Candies(SPFA+栈)差分约束
题目链接:http://poj.org/problem?id=3159 题意:给出m给 x 与y的关系.当中y的糖数不能比x的多c个.即y-x <= c 最后求fly[n]最多能比so[1] ...
- POJ 3159 Candies(差分约束+spfa+链式前向星)
题目链接:http://poj.org/problem?id=3159 题目大意:给n个人派糖果,给出m组数据,每组数据包含A,B,C三个数,意思是A的糖果数比B少的个数不多于C,即B的糖果数 - A ...
- 图论--差分约束--POJ 3159 Candies
Language:Default Candies Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 43021 Accep ...
- POJ 3159 Candies 差分约束dij
分析:设每个人的糖果数量是a[i] 最终就是求a[n]-a[1]的最大值 然后给出m个关系 u,v,c 表示a[u]+c>=a[v] 就是a[v]-a[u]<=c 所以对于这种情况,按照u ...
随机推荐
- 聊聊 TCP 中的 KeepAlive 机制
KeepAlive并不是TCP协议规范的一部分,但在几乎所有的TCP/IP协议栈(不管是Linux还是Windows)中,都实现了KeepAlive功能 RFC1122#TCP Keep-Alives ...
- 悦享双节,Guitar Pro也来凑份热闹!
光阴似箭,又是一个金秋的十月,祖国迎来了第68个生日,不同以往的是今年的中秋佳节与国庆假日重叠在一起了,这算不算是喜上加喜呢? 提到国庆人们的耳边总是会响起了一遍又一遍的国歌“起来,起来不愿做奴隶的人 ...
- NodeJS加密算法(转)
nodejs中常用加密算法 1.Hash算法加密: 创建一个nodejs文件hash.js,输入内容如下: 1 var crypto = require('crypto'); //加载crypto ...
- DOM元素属性值如果设置为对象
结论:内部会调用toString方法,将设置的对象转换为字符串添加给相应的属性: 这个问题呢,是通过jQuery的each方法中,回调函数的this指向问题而来: 我们知道,回调函数中的this如果指 ...
- 洛谷1099 [NOIP2007] 树网的核
链接https://www.luogu.org/problemnew/show/P1099 题目描述 设T=(V,E,W)是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称TTT为 ...
- 小学生都能学会的python(运算符 和 while循环)
---恢复内容开始--- 小学生都能学会的python(运算符和编码) 一.格式化输出 #占位:"%s"占位,占得是字符串,"%d"占位,占的是数字. # 让用 ...
- 20130910.Windows上安装和配置MongoDB
官方文档:http://docs.mongodb.org/manual/tutorial/ 1.下载软件 http://www.mongodb.org/downloads 2.解压 解压后进入bin目 ...
- java中Collection 与Collections的区别
1. Collection是集合类的一个顶级接口,其直接继承接口有List与Set 而Collections则是集合类的一个工具类/帮助类,其中提供了一系列静态方法,用于对集合中元素进行排序.搜索以及 ...
- HDU 5416 CRB and Tree (2015多校第10场)
欢迎參加--每周六晚的BestCoder(有米!) CRB and Tree Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536 ...
- lambda的函数式接口
函数式接口就是只包含一个抽象方法的接口A(不包括默认抽象方法,但包括继承来的方法):这个接口用来作为一个可变作用的方法B的参数.函数式接口的抽象方法的参数类型和返回值就是一套签名,这个签名叫做函数描述 ...