BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 4201 Solved: 1851
[Submit][Status][Discuss]
Description
L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内
陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象
部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于
地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库
的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设
置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,
假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到
以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用
Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
Input
第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。
Output
仅包含一个整数,为可以找到最优方案的费用。
Sample Input
0 5 10
5 3 100
9 6 10
Sample Output
HINT
在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。
【数据规模】
对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。
总结一下普通斜率优化题的过程吧:
f[i]=min{f[j]+c[i]+p[j+1]*(x[i]-x[j+1])+p[j+2]*(x[i]-x[j+2])}
处理p和x*p的前缀和
然后化啊化,
slope(j,k)=(double)(g[k]-g[j]+f[k]-f[j])/(double)(p[k]-p[j])
得到j<k,slope(j,k)<x[i]时k更优
判断一下发现x<y<z,slope(x,y)>slope(y,z)时y不是最优
是一个下凸壳
因为p和g单增,单调队列维护就行了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1e6+,INF=1e9;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
ll n,p[N],g[N],x[N],c[N];
ll f[N];
inline double slope(int j,int k){
return (double)(g[k]-g[j]+f[k]-f[j])/(double)(p[k]-p[j]);
}
int q[N],head,tail;
void dp(){
head=tail=;
for(int i=;i<=n;i++){
while(head<tail&&slope(q[head],q[head+])<=x[i]) head++;
int j=q[head];
f[i]=x[i]*(p[i]-p[j])-(g[i]-g[j])+c[i]+f[j];
while(head<tail&&slope(q[tail-],q[tail])>slope(q[tail],i)) tail--;
q[++tail]=i;
}
printf("%lld",f[n]);
}
int main(){
//freopen("in.txt","r",stdin);
n=read();
for(int i=;i<=n;i++){
x[i]=read();p[i]=read();c[i]=read();
g[i]=g[i-]+x[i]*p[i];p[i]+=p[i-];
}
dp();
}
BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]的更多相关文章
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- bzoj 1096: [ZJOI2007]仓库建设 斜率優化
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2242 Solved: 925[Submit][Statu ...
- bzoj1096[ZJOI2007]仓库建设 斜率优化dp
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5482 Solved: 2448[Submit][Stat ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...
- P2120 [ZJOI2007]仓库建设 斜率优化dp
好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
- [ZJOI2007] 仓库建设 - 斜率优化dp
大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...
- BZOJ 1096 ZJOI2007 仓库建设 边坡优化
标题效果:特定n植物,其中一些建筑仓库,有一点使,假设没有仓库仓库向右仓库.最低消费要求 非常easy边坡优化--在此之前刷坡优化的情况下,即使这道题怎么错过 订购f[i]作为i点建设化妆i花费所有安 ...
- BZOJ 1096: [ZJOI2007]仓库建设( dp + 斜率优化 )
dp(v) = min(dp(p)+cost(p,v))+C(v) 设sum(v) = ∑pi(1≤i≤v), cnt(v) = ∑pi*xi(1≤i≤v), 则cost(p,v) = x(v)*(s ...
随机推荐
- jquery css事件编程 位置 操作
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- UVALive 6908---Electric Bike(DP或记录型深搜)
题目链接 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- S1java基础学习笔记
第一章 Java基础 程序目标:减轻现实生活中一类人的工作量,提高工作效率. 学员最终可以书写系统: 超市管理系统,POS机系统等 入库单 销售单 01.课程重点 五大重点: 01.分支(选择)结构 ...
- jQuery切换网页皮肤保存到Cookie实例
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/25.htm 以下是源代码: <!DOCTYPE html PUBLIC "-//W3C//D ...
- 使用AngularJS实现简单:全选和取消全选功能
这里用到AngularJS四大特性之二----双向数据绑定 注意:没写一行DOM代码!这就是ng的优点,bootstrap.css为了布局,JS代码也只是简单创建ng模块和ng控制器 效果: < ...
- Mvc传值
提到Mvc传值我想大多数人想到的是ViewBag,自3.0之后在控制器与视图之间传值绝大多数传值用到的对象就是ViewBag.对于笔者以前做过的一些小的项目,貌似不需要考虑什么,但对于稍微大些的项目涉 ...
- 奇妙的CSS之布局与定位
前言 关于布局与定位是Web前端开发里非常基础而又重要的部分.介绍相关知识的文章,很容易就可以找到.虽然,这方面的知识点不是很多,但我们如果不弄清楚,在运用时候往往会出现预料之外的布局,这些“意外”有 ...
- web安全攻防----环境搭建篇
1.安装虚拟机vMware. 2.在虚拟机上安装kali系统. *Kali为linux操作系统的一个发行版. 3.安装Xshell *Xshell是一个强大的安全终端模拟软件,它支持SSH1, SSH ...
- iOS 系统分析(一) 阅读内核准备知识
➠更多技术干货请戳:听云博客 0x01 iOS体系架构 1.1 iOS 系统的整体体系架构 用户体验( The User Experience layer ):SpringBoard 同时支持 Spo ...
- CocoaPods安装及使用详情
CocoaPods是什么? 当你开发iOS应用时,会经常使用到很多第三方开源类库,比如JSONKit,SDWebImage等等.可能某个类库又用到其他类库,所以要使用它,必须得另外下载其他类库,而其他 ...