割点与桥

在一个无向连通图中,若将某个点及其相连的边删除后,图就不连通了,则这样的点被称为割点。

在一个无向连通图中,若将某条边删除后,图就不连通了,则这样的边被称为割边,即桥。

在一张图中求出割点或割边前,我们还需要两个辅助值来得到答案。

时间戳(dfn)

在图的dfs过程中,每个点被第一次访问的时间排行即为时间戳。

追溯值(low)

对于每一个点,该点的追溯值为以该点为根的子树中所有能通过一条不在搜索树上的边能到达该点的点的时间戳最小值。

即对于每一个点\(x\),它的追溯值要满足三个条件:

1)是\(x\)子树中的某点的时间戳;

2)是通过一条不在搜索树上的边能回到\(x\)或其祖先的点的时间戳;

3)满足以上条件的最小值。

那么如何来求\(low[x]\)呢?

首先要使\(low[x]=dfn[x]\),考虑\(x\)的每条连向子节点的边\((x,y)\).

\(low[x]=min(low[x],low[y])\)

若\((x,y)\)不是搜索树上的边,则\(low[x]=min(low[x],dfn[y])\)

代码实现:

void tarjan(int x, int intree) {
dfn[x] = low[x] = ++ cnt;
for (int i = Link[x]; i; i = e[i].next) {
int y = e[i].to;
if (!tarjan[y]) {
tarjan(y, i);
low[x] = min(low[x], low[y]);
}
else if (i != (intree ^ 1)) low[x] = min(low[x], dfn[y]);
}
}
//以下内容在main函数中:
tot = 1;
for (int i = 1; i <= n; ++ i) if (!dfn[i]) tarjan(i);

在这份代码中,为了方便记录某点到子节点的边编号,要将\(tot\)的初值赋为\(1\);以及异或(^)的优先级没有!=高,所以要在\(intree^1\)上加括号提高优先级

得到这些值,我们就可以用来判断某点/边是否为割点/边

割边的判定法则

考虑一条边\((x,y)\),\(y\)是\(x\)的子节点,若\(low[y]<dfn[x]\),即在\(x\)的子树中,没有任何一个点能不通过\((x,y)\)到\(x\)及其祖先上,则说明这条边是割边。

HLOJ的模板题为例:

#include<bits/stdc++.h>
using namespace std; const int N = 100009, M = 300009;
int n, m, Link[N], tot = 1, dfn[N], low[N], cnt;
struct edge{int next, to, bridge;} e[M << 1];
struct answer{int x, y;} ans[M]; inline void add(int x, int y) {e[++ tot].next = Link[x]; Link[x] = tot; e[tot].to = y;} void tarjan(int x, int intree) {
dfn[x] = low[x] = ++ cnt;
for (int i = Link[x]; i; i = e[i].next) {
int y = e[i].to;
if (!dfn[y]) {
tarjan(y, i);
low[x] = min(low[x], low[y]);
if (low[y] > dfn[x]) e[i].bridge = e[i ^ 1].bridge = 1;
}
else if (i != (intree ^ 1)) low[x] = min(low[x], dfn[y]);
}
} inline bool cmp(answer x, answer y) {return x.x == y.x ? x.y < y.y : x.x < y.x;} int main() {
freopen("danger.in", "r", stdin);
freopen("danger.out", "w", stdout);
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; ++ i) {
int x, y;
scanf("%d%d", &x, &y);
add(x, y), add(y, x);
}
for (int i = 1; i <= n; ++ i) if (!dfn[i]) tarjan(i, 0);
cnt = 0;
for (int i = 2; i < tot; i += 2) if (e[i].bridge) ans[++ cnt].x = min(e[i ^ 1].to, e[i].to), ans[cnt].y = max(e[i ^ 1].to, e[i].to);
sort(ans + 1, ans + cnt + 1, cmp);
for (int i = 1; i <= cnt; ++ i) printf("%d %d\n", ans[i].x, ans[i].y);
return 0;
}

由于上文提到\(tot\)从\(1\)开始,所以在得出割边是要从tot=2开始枚举。

割点的判定法则

类似于判定割边,只要满足\(low[y]<=dfn[x]\)的点即为割点。

求割点的方法类似,故不再赘述。

两道例题

BZOJ1123 BLO

题意

给出一张无向连通图,求去掉每一个点后有多少有序点对不连通

\((n<=100000,m<=500000)\)

题解

若某一个点不是割点,即删除该点后图仍然连通,则只有该点产生\(2(n-1)\)的贡献;

考虑某一点\(x\)是割点,删除它后我们把图分成三部分考虑:

1)\(x\)本身

2)\(x\)子树内除了\(x\)的点

3)\(x\)子树外的点

这三者的大小分别为\(1\),\(size[y]\),\(n-1-\sum size[y]\).

那么答案为\(\sum size[y]*(n-size[y])+(n-1)+(\sum size[y])*(n-1-\sum size[y])\)

有关图的连通性的Tarjan算法的更多相关文章

  1. 求图的强连通分量--tarjan算法

    一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...

  2. 萌新学习图的强连通(Tarjan算法)笔记

    --主要摘自北京大学暑期课<ACM/ICPC竞赛训练> 在有向图G中,如果任意两个不同顶点相互可达,则称该有向图是强连通的: 有向图G的极大强连通子图称为G的强连通分支: Tarjan算法 ...

  3. Tarjan算法与割点割边

    目录 Tarjan算法与无向图的连通性 1:基础概念 2:Tarjan判断割点 3:Tarjan判断割边 Tarjan算法与无向图的连通性 1:基础概念 在说Tarjan算法求解无向图的连通性之前,先 ...

  4. 图的连通性——Tarjan算法&割边&割点

    tarjan算法 原理: 我们考虑 DFS 搜索树与强连通分量之间的关系. 如果结点 是某个强连通分量在搜索树中遇到的第⼀个结点,那么这个强连通分量的其余结点肯定 是在搜索树中以 为根的⼦树中. 被称 ...

  5. 图的连通性--Tarjan算法

    一些概念 无向图: 连通图:在无向图中,任意两点都直接或间接连通,则称该图为连通图.(或者说:任意两点之间都存在可到达的路径) 连通分量: G的 最大连通子图 称为G的连通分量. 有向图 (ps.区别 ...

  6. Tarjan算法:求解图的割点与桥(割边)

    简介: 割边和割点的定义仅限于无向图中.我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低.Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边 ...

  7. 关于连通性问题的Tarjan算法暂结

    关于基础知识的预备桥和割点.双联通分量.强连通分量,支配树.(并不会支配树) 关于有向图的Tarjan,是在熟悉不过的了,它的主要功能就是求强联通分量,缩个点,但是要注意一下构建新图的时候有可能出现重 ...

  8. tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)

    基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...

  9. 【强联通图 | 强联通分量】HDU 1269 迷宫城堡 【Kosaraju或Tarjan算法】

      为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明 ...

随机推荐

  1. SNN对抗攻击笔记

    SNN对抗攻击笔记: 1. 解决SNN对抗攻击中脉冲与梯度数据格式不兼容性以及梯度消失问题: G2S Converter.Gradient Trigger[1] 2. 基于梯度的对抗攻击方式: FGS ...

  2. 企业项目实战 .Net Core + Vue/Angular 分库分表日志系统五 | 完善业务自动创建数据库

    教程预览 01 | 前言 02 | 简单的分库分表设计 03 | 控制反转搭配简单业务 04 | 强化设计方案 05 | 完善业务自动创建数据库 说明 这节来把基础的业务部分完善一下. 因为 IQue ...

  3. RabbitMQ高级之如何保证消息可靠性?

    人生终将是场单人旅途,孤独之前是迷茫,孤独过后是成长. 楔子 本篇是消息队列RabbitMQ的第四弹. RabbitMQ我已经写了三篇了,基础的收发消息和基础的概念我都已经写了,学任何东西都是这样,先 ...

  4. 使用tensorflow2识别4位验证码及思考总结

    在学习了CNN之后,自己想去做一个验证码识别,网上找了很多资料,杂七杂八的一大堆,但是好多是tf1写的,对tf1不太熟悉,有点看不懂,于是自己去摸索吧. 摸索的过程是异常艰难呀,一开始我直接用capt ...

  5. python+requests+unittest执行自动化接口测试

    1.安装requests.xlrd.json.unittest库 <1>pip 命令安装: pip install requestspip install xlrdpip install ...

  6. 23种设计模式 - 行为变化(Command - Visitor)

    其他设计模式 23种设计模式(C++) 每一种都有对应理解的相关代码示例 → Git原码 ⌨ 行为变化 Command 动机(Motivation) 在软件构建过程中,"行为请求者" ...

  7. RabbitMQ配置文件(rabbitmq.conf)

    rabbitmq.conf配置文件示例: #====================================== #RabbitMQ经纪人部分 #======================= ...

  8. unity3d插入android有米广告

    有米官网:http://www.youmi.net/register?r=MTI0MDg= 国内的广告,我觉得万普和有米还不错,我也只试了这两个,其他的都是看评价的,呵呵~~~首先我们去有米官网注册一 ...

  9. 【好文分享】为什么强烈禁止开发人员使用isSuccess作为变量名

    原文来自阿里云hollies:https://developer.aliyun.com/article/701413   简介: 在日常开发中,我们会经常要在类中定义布尔类型的变量,比如在给外部系统提 ...

  10. 13_Python的面向对象编程-类class,对象object,实例instance

    1.面向对象概述 1.类是用来描述对象的工具,把拥有相同属性和行为的对象分为一组     2.对象是由类实例化出来的一个具体的对象         属性: 对象拥有的名词,用变量表示         ...