主题列表:juejin, github, smartblue, cyanosis, channing-cyan, fancy, hydrogen, condensed-night-purple, greenwillow, v-green, vue-pro, healer-readable, mk-cute, jzman, geek-black, awesome-green, qklhk-chocolate

贡献主题:https://github.com/xitu/juejin-markdown-themes

theme: juejin

highlight:

文章来自:同作者微信公众号【机器学习炼丹术】~

0 综述

这一篇文章和上一篇的rank-IQA感觉都是不错的处理NR-IQA任务的框架,让我们好好学一学这一篇文章中的精髓。

1 related work

这一篇文章的related work列举了很多之前的NR-IQA的模型:

  • 【18】

    • DIIVINE:先识别图像失真的类型,然后选择对应类型的回归模型得到具体质量分数;
  • 【20】
    • BRISQUE:利用非对称广义高斯分布在空间域对图像进行建模,模型特征是空间邻域的差值;
  • 【21】
    • NIQE:利用多元高斯模型提取特征,然后利用无监督的方法把他们和质量分布结合起来;
  • 【22】
    • FRIQUEE:把人工提取的特征图输入到4层的深度置信网络中,输出特征向量,利用SVM分类;
  • 【24】
    • CORNIA:最先使用纯数据驱动解决NR-IQA问题的模型之一,使用k-mean聚类处理亮度和对比度被标准化的图片patch,然后从数据中抽取软编码距离来预测质量分数;
  • 【28】
    • BIECOM:第一步用标准话的图片patch经过CNN估计出一个本地质量分数(这个模型是使用现有的FR数据集预训练),然后在把分数的均值和方差作为特征回顾分数;

不说了,看了半天很多都是很老的人工特征的方法,不太行不太行。

1 细节

1.1 FR-IQA

论文中也是使用了和上一篇文章rank-IQA一样的模型,孪生网络saimese net,论文中先提出了FR-IQA的模型框架:



在这个框架中,图片是被patch称32x32的大小,然后feature extractor使用的是VGG19,包含5个maxpool层,也就是说,经过features extractor后,特征会变成(512,1,1)这样的shape。

对于FR-IQA问题,reference patch和distorted patch经过feature extractor得到两个512的向量,然后在fusion阶段使用concat拼接在一起,除了这两个,还把两个特征向量的差值也一同拼接进来,显式的把两个特征的区别也作为特征了,总之是这个样子的:\(concat(f_r,f_d,f_r-f_d)\)

在fusion features vector后面有两个部分,一个是回归,一个是weights;关于如何从很多的patches中得到整个图片的质量分数,作者给出了两个方法: 这个patch是从图像中无重叠的采样

  1. 简单的平均。

对于这种平均的方法,所有patch对于整个图片的影响是相同的,所以损失函数也定位MAE:

  1. 加权平均。

    如上图的结构,对特征进行融合之后,进行回归,输出一个patch的质量分数之后,还要在另外一个分支输出这个patch在整个图片中的权重分数。权重参数保证是大于0的。

1.2 NR-IQA



就是单纯的把reference去掉,然后不做特征融合。

2 总结

这是一种利用CNN来处理质量评估的一个基本框架和思路。作为入门学习是比较好的一个框架。

图像质量评估论文 | Deep-IQA | IEEETIP2018的更多相关文章

  1. 图像质量评估(IQA)

    图像质量评估函数的分类曾是一个比较有争议的话题,在2l世纪以前曾经有过 比较多的讨论.但是随着研究的深入和技术的广泛应用,研究人员对于图像质量 评估函数的分类有了统一的认识,即从实际应用中参考信息供给 ...

  2. Deep Learning 18:DBM的学习及练习_读论文“Deep Boltzmann Machines”的笔记

    前言 论文“Deep Boltzmann Machines”是Geoffrey Hinton和他的大牛学生Ruslan Salakhutdinov在论文“Reducing the Dimensiona ...

  3. 图片质量评估论文 | 无监督SER-FIQ | CVPR2020

    文章转自:同作者微信公主号[机器学习炼丹术].欢迎交流,共同进步. 论文名称:SER-FIQ: Unsupervised Estimation of Face Image Quality Based ...

  4. IQA(图像质量评估)

    图像质量评价(Image Quality Assessment,IQA)是图像处理中的基本技术之一,主要通过对图像进行特性分析研究,然后评估出图像优劣(图像失真程度). 主要的目的是使用合适的评价指标 ...

  5. Deep Reinforcement Learning for Dialogue Generation 论文阅读

    本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...

  6. 论文笔记:RankIQA

    0.Abstract 本文提出了一种从排名中学习的无参考图像质量评估方法(RankIQA).为了解决IQA数据集大小有限的问题,本文训练了一个孪生网络,通过使用合成的已知相对图像质量排名的数据集来训练 ...

  7. 深度学习论文翻译解析(四):Faster R-CNN: Down the rabbit hole of modern object detection

    论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Ton ...

  8. 18 Issues in Current Deep Reinforcement Learning from ZhiHu

    深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两 ...

  9. (转) 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文)

    本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 201 ...

随机推荐

  1. go学习的第7天

    不容易啊,坚持7天了呢,今天开始看视频学习 https://www.bilibili.com/video/BV1pt41127FZ?from=search&seid=4441824587572 ...

  2. 如何实现OSM地图本地发布并自定义配图

    目录 1.缘起 2.准备环境 2.1.安装linux系统 2.2.安装docker 2.3.安装Docker Compose 2.4.安装git 3.发布地图 3.1.拉取代码 3.2.测试网络 3. ...

  3. 【MindSpore】Ubuntu16.04上成功安装GPU版MindSpore1.0.1

    本文是在宿主机Ubuntu16.04上拉取cuda10.1-cudnn7-ubuntu18.04的镜像,在容器中通过Miniconda3创建python3.7.5的环境并成功安装mindspore_g ...

  4. OGG报错:Cannot load ICU resource bundle 'ggMessage', error code 2 - No such file or directory

    [oracle@dgdb1 ~]$ ggsci Oracle GoldenGate Command Interpreter for OracleVersion 11.2.1.0.3 14400833 ...

  5. el-amap 遮罩(带洞多边形)

    el-amap 遮罩(带洞多边形) 遮罩(带洞多边形) 效果图 代码 <template> <div> <el-amap vid="amapDemo" ...

  6. 云原生网络代理(MOSN)的进化之路

    本文系云原生应用最佳实践杭州站活动演讲稿整理.杭州站活动邀请了 Apache APISIX 项目 VP 温铭.又拍云平台开发部高级工程师莫红波.蚂蚁金服技术专家王发康.有赞中间件开发工程师张超,分享云 ...

  7. 详解Java中的IO输入输出流!

    目录 本片要点 基本分类 发展史 文件字符流 输出的基本结构 流中的异常处理 异常处理新方式 读取的基本结构 运用输入与输出完成复制效果 文件字节流 缓冲流 字符缓冲流 装饰设计模式 转换流(适配器) ...

  8. python 连接数据库操作

    import mysql #打开数据库连接(用户名,密码,数据库名) db = mysql.connect("localhost","testuser",&qu ...

  9. ​grafana 的主体架构是如何设计的?

    ​grafana 的主体架构是如何设计的? grafana 是非常强大的可视化项目,它最早从 kibana 生成出来,渐渐也已经形成了自己的生态了.研究完 grafana 生态之后,只有一句话:可视化 ...

  10. NET Core 使用EF Core的Code First迁移和DBFirst

    DBFirst (1)Microsoft.EntityFrameworkCore (2)Microsoft.EntityFrameworkCore.Design (3)Microsoft.Entity ...