LIS(nlogn)算法描述//线性DP经典类型
题目描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是\le 50000≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入格式
11行,若干个整数(个数\le 100000≤100000)
输出格式
22行,每行一个整数,第一个数字表示这套系统最多能拦截多少导弹,第二个数字表示如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入输出样例
389 207 155 300 299 170 158 65
6
2
说明/提示
为了让大家更好地测试n方算法,本题开启spj,n方100分,nlogn200分
看了几篇博客,讲的都是最长上升子序列的nlogn 解法:只是简单的讲了是 贪心+DP
贪心 :大部分是这样证明的:
当你从一串数中构造一个最长子序列,在选择数时 要尽量选择最大的数字作为下一个数字,因为大的数字为后续选择提供了更多选择,从而使序列变得更长;
当你这次选的数字比正在构造的最后一个数字大时,找到比你这次选的数字小于等于的地方,用这个数字替换原先存在的数字,而且,在这个替换的数字后的数字不要删掉。
形如下面这个样例:
这个样例展示的是《《《最长不上升子序列》》》
一组样例:
//90 103 99 83 102 70 86 70 99 71
//结果是:5
在构造的序列变化是:
90
103
103 99
103 99 83
103 102 83
103 102 83 70
103 102 86 70
103 102 86 70 70
103 102 99 70 70
103 102 99 71 70 //显然最后得到的不一定是真实应该得到的子序列;
103 99 83 70 70//真实应该得到的子序列
明显可以看出:真实的子序列中的数字都是曾经在此位置的数字。
将这个位置替换,其实只是在原先位置更换了一个新的用于比较的标签,因为这个新的标签更大,为后边提供了更长的可能。
此题AC代码:lower_bound(begin(),end(),x,greater<int>()); 通过greater<int>()改变比较方向。
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
vector<int>a,b,c; int main ()
{
int num,n=0;
while(cin>>num)
{
n++;
a.push_back(num);
}
n--;
for(int i=0;i<=n;i++)
{
int it=upper_bound(b.begin(),b.end(),a[i],greater<int>())-b.begin();
//cout<<it<<endl;
if(it==b.size())
b.push_back(a[i]);
else
{
b[it]=a[i];
}
int itn=lower_bound(c.begin(),c.end(),a[i])-c.begin();
if(itn==c.size())
c.push_back(a[i]);
else
c[itn]=a[i];
}
//for(auto itm:b)
// cout<<itm<<endl;
cout<<b.size()<<endl;
cout<<c.size();
return 0;
}
一个变式题目:
N位同学站成一排,音乐老师要请其中的(N-KN−K)位同学出列,使得剩下的KK位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2,…,K1,2,…,K,他们的身高分别为T_1,T_2,…,T_KT1,T2,…,TK, 则他们的身高满足T_1<...<T_i>T_{i+1}>…>T_K(1 \le i \le K)T1<...<Ti>Ti+1>…>TK(1≤i≤K)。
你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
输入格式
共二行。
第一行是一个整数N(2 \le N \le 100)N(2≤N≤100),表示同学的总数。
第二行有nn个整数,用空格分隔,第ii个整数T_i(130 \le T_i \le 230)Ti(130≤Ti≤230)是第ii位同学的身高(厘米)。
输出格式
一个整数,最少需要几位同学出列。
输入输出样例
8
186 186 150 200 160 130 197 220
4
数据范围非常小,可以枚举任何一个值,左边取最长上升子序列,右边取最长下降子序列
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int a[105];
int n;
int lis_1(int m)
{
vector<int>b;
for(int i=1;i<=m;i++)
{
int it=lower_bound(b.begin(),b.end(),a[i])-b.begin();
if(it==b.size())
b.push_back(a[i]);
else
b[it]=a[i];
}
return b.size();
}
int lis_2(int m)
{
vector<int>c;
for(int i=m;i<=n;i++)
{
int it=lower_bound(c.begin(),c.end(),a[i],greater<int>())-c.begin();
if(it==c.size())
c.push_back(a[i]);
else
c[it]=a[i];
}
return c.size();
} int main ()
{ cin>>n;
int ans=n;
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<=n;i++)
{
ans=min(ans,n+1 - lis_1(i) - lis_2(i));
}
cout<<ans<<endl; return 0;
}
LIS(nlogn)算法描述//线性DP经典类型的更多相关文章
- lis nlogn算法
当前所在位的最长上升子序列只和前面一个字符有关 #include <iostream> #include <algorithm> using namespace std; ]; ...
- POJ 1631 Bridging signals(LIS O(nlogn)算法)
Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...
- nyoj44 子串和 线性DP
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...
- 线性DP总结(LIS,LCS,LCIS,最长子段和)
做了一段时间的线性dp的题目是时候做一个总结 线性动态规划无非就是在一个数组上搞嘛, 首先看一个最简单的问题: 一,最长字段和 下面为状态转移方程 for(int i=2;i<=n;i++) { ...
- 最长上升子序列(LIS)长度的O(nlogn)算法
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- 线性DP LIS浅谈
LIS问题 什么是LIS? 百度百科 最长上升子序列(Longest Increasing Subsequence,LIS),在计算机科学上是指一个序列中最长的单调递增的子序列. 怎么求LIS? O( ...
- AT2827 最长上升子序列LIS(nlogn的DP优化)
题意翻译 给定一长度为n的数列,请在不改变原数列顺序的前提下,从中随机的取出一定数量的整数,并使这些整数构成单调上升序列. 输出这类单调上升序列的最大长度. 数据范围:1<=n<=10 ...
- 线性DP详解
顾名思义,线性DP就是在一条线上进行DP,这里举一些典型的例子. LIS问题(最长上升子序列问题) 题目 给定一个长度为N的序列A,求最长的数值单调递增的子序列的长度. 上升子序列B可表示为B={Ak ...
随机推荐
- JVM-03
目录 1.1 新生代垃圾收集器 1.1.1 Serial 垃圾收集器(单线程) 1.1.2 ParNew 垃圾收集器(多线程) 1.1.3 Parallel Scavenge 垃圾收集器(多线程) 2 ...
- ip访问本机vs调试项目
环境:win10 vs2019 webapi F5启动调试. 问题:localhost可以访问,127.0.0.1和本机ip访问不了.比如想让别人浏览一下看效果,或者测试人员测试功能,每次修改都有重新 ...
- Python pip install 默认路径修改。
pip动不动就下载数百M的文件.这些文件默认在C:盘,那么为了节省空间需要修改这些路径: 打开cmd命令窗口.输入: python -m site C:\Users\hewei>python - ...
- /etc/hosts文件
这个文件告诉主机哪些域名对应哪些ip,哪些主机名对应哪些ip. 一般也三个域 网络ip地址 主机名或域名 主机名别名 两部分的时候 主机ip地址和主机名
- Netty学习:EventLoop事件机制
目录 EventLoop是什么 EventLoop适用的场景 Netty中的EventLoop Netty中的大量inEventLoop判断 Netty是如何建立连接并监听端口的-NIOSocketC ...
- 面试官问我CAS,我一点都不慌
文章以纯面试的角度去讲解,所以有很多的细节是未铺垫的. 文章中写到的处理线程安全的思路每一项技术都可以写出一篇文章,AQS.Synchronized.Atomic...周末肝起来!下周再来给大家安排! ...
- 使用git同步代码
方法1.先把远程仓库clone到本地,本地修改后再push到gitee的远程仓库 1. 配置本地的git配置信息 git config -l #查看git本地配置信息 # 如果没有配置,需要配置自己的 ...
- 获取html中某些标签的值
一.获取单选按钮radio的值 <!doctype html> <html lang="en"> <head> <meta charset ...
- Sentry(v20.12.1) K8S 云原生架构探索,JavaScript Enriching Events(丰富事件信息)
系列 Sentry-Go SDK 中文实践指南 一起来刷 Sentry For Go 官方文档之 Enriching Events Snuba:Sentry 新的搜索基础设施(基于 ClickHous ...
- .NET, NETCORE 怎么写 "超时"代码,解析"超时"代码原理!
干货:本人不会长篇大论.能贴上去的,就是干货,能用一两句话讲明白的,不会大讲概念,不会浪费大家宝贵的时间. 前言:我们发现,超时是个非常重要的概念,如果在通讯架构中,没有超时的设计,那么这个通讯架构就 ...