HDU6370 Werewolf 【基环内向树】
HDU6370 Werewolf
题意:
有\(N\)个人玩狼人杀,只有村民和狼人,每个人指定另一个人并指出一个身份,其中:村民是不会说谎的,狼人是有可能说谎的,问在所有情况下必然是狼人的人数和必然是村民的人数分别有多少
题解:
首先所有人都有可能说谎,所以不可能有人必然是村民
接下来我们考虑是否有人必然是狼人,我们考虑反推,即假设某个人是村民,是否产生矛盾
首先建图,每个人向其指定的那个人连边,如果指定为狼人,边权是\(1\),否则边权是\(0\)
可以发现,对于每一块联通块,都是一棵基环内向树,首先我们考虑环中是否有人必然是狼人
显然如果环的权值是\(1\)的情况下才有可能必定存在狼人,在这个情况下,唯一被指定是狼人的那个人必定只能是狼人
然后考虑不在环上的人,如果指定了环上的狼人为村民的话,这也必然是狼人,而且这是有传递性的,也就是如果当前人指定一个狼人是村民,那么指向这个人的人,如果也指定是村民,那那个人也是狼人,直到有人指定其父节点是狼为止
view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
int n, to[MAXN], w[MAXN], bel[MAXN];
bool vis[MAXN];
vector<int> G[MAXN];
vector<int> pt[MAXN];
void mark(int u, int id){
bel[u] = id;
pt[id].push_back(u);
for(int v : G[u]) if(!bel[v]) mark(v,id);
}
void dfs(int u, int &__count){
vis[u] = true;
for(int v : G[u]){
if(vis[v] or w[v]) continue;
__count++;
dfs(v,__count);
}
}
int rua(int id){
vector<int> vec;
stack<int> stk;
int u = pt[id][0];
while(true){
stk.push(u);
vis[u] = true;
if(vis[to[u]]){
int tp;
do{
vec.push_back(tp=stk.top());
stk.pop();
}while(tp!=to[u]);
break;
}
u = to[u];
}
int __count = 0;
for(int x : vec) __count += w[x];
if(__count!=1) return 0;
for(int x : vec) if(w[x]){
u = to[x];
break;
}
for(int x : pt[id]) vis[x] = false;
for(int x : vec) vis[x] = true;
dfs(u,__count);
return __count;
}
void solve(){
static char buf[20];
scanf("%d",&n);
for(int i = 1; i <= n; i++) G[i].clear();
for(int i = 1; i <= n; i++){
scanf("%d %s",&to[i],buf);
w[i] = buf[0]=='w'?1:0;
G[i].push_back(to[i]);
G[to[i]].push_back(i);
}
memset(bel+1,0,4*n);
memset(vis+1,0,n);
int ID = 0;
for(int i = 1; i <= n; i++){
if(!bel[i]){
++ID;
pt[ID].clear();
mark(i,ID);
}
}
int __count = 0;
for(int i = 1; i <= ID; i++) __count += rua(i);
printf("%d %d\n",0,__count);
}
int main(){
int tt;
for(scanf("%d",&tt); tt; tt--) solve();
return 0;
}
HDU6370 Werewolf 【基环内向树】的更多相关文章
- 【LCT维护基环内向树森林】BZOJ4764 弹飞大爷
4764: 弹飞大爷 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 101 Solved: 52[Submit][Status][Discuss] ...
- 牛客多校第二场B discount 基环内向树
题意: 有n种商品,每种商品有一个价格 p[i] . 每种商品都有2种打折方式: 1. 给你优惠 d[i] 元. 2. 免费送你第 f[i] 种饮料. 现在求每种饮料至少一瓶的最小花费. dp[i][ ...
- bzoj 1040 [ZJOI2008]骑士(基环外向树,树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1040 [题意] 给一个基环森林,每个点有一个权值,求一个点集使得点集中的点无边相连且权 ...
- [BZOJ 1040] [ZJOI2008] 骑士 【基环+外向树DP】
题目链接:BZOJ - 1040 题目分析 这道题目的模型就是一个图,不一定联通,每个连通块的点数等于边数. 每个连通块都是一个基环+外向树.即树上增加了一条边. 如果是树,就可以直接树形DP了.然而 ...
- [bzoj] 1040 骑士 || 基环外向树dp
原题 给出n个点n条边和每个点的点权,一条边的两个断点不能同时选择,问最大可以选多少. //图是一张基环外向树森林 是不是很像舞会啊- 就是多了一条边. 所以我们考虑一下对于一棵基环外向树,拆掉一条在 ...
- 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士
基环外向树dp竟然如此简单…… Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发 ...
- BZOJ1040 骑士 基环外向树
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6421 Solved: 2544[Submit][Status ...
- bzoj1040 内向树DP
2013-11-17 08:52 原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1040 N个骑士,每个人有一个仇人,那么,每个骑士只有一个 ...
- 【BZOJ1040】[ZJOI2008] 骑士(基环外向树DP)
点此看题面 大致题意: 给你一片基环外向树森林,如果选定了一个点,就不能选择与其相邻的节点.求选中点的最大权值和. 树形\(DP\) 此题应该是 树形\(DP\) 的一个升级版:基环外向树\(DP\) ...
随机推荐
- 初识sa-token,一行代码搞定登录授权!
前言 在java的世界里,有很多优秀的权限认证框架,如Apache Shiro.Spring Security 等等.这些框架背景强大,历史悠久,其生态也比较齐全. 但同时这些框架也并非十分完美,在前 ...
- 【LeetCode】365.水壶问题
题目描述 解题思路 思路一:裴蜀定理-数学法 由题意,每次操作只会让桶里的水总量增加x或y,或者减少x或y,即会给水的总量带来x或y的变化量,转为数字描述即为:找到一对整数a,b使得下式成立: ax+ ...
- leetcode-222完全二叉树的节点个数
题目 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置. ...
- 执行py文件需要可执行权限吗?
案例解析 这个问题描述起来有点违反直觉,要执行一个文件难道不应该需要可执行权限吗?让我们先来看一个例子: # module1.py def test(): print ('hello world!') ...
- python3.6安装教程
Python代码要运行,必须要有Python解释器.Python3.x的版本是没有什么区别的,这里以3.6版本来演示安装的过程.这里只介绍Windows环境下的安装. 下载安装程序 Python官方的 ...
- MySQL下载与安装教程
一,下载篇 1,首先访问MySQL官网下载页,https://dev.mysql.com/downloads/mysql/ 如果是MAC系统,操作系统请选择macOS,Windows则选择Window ...
- [Usaco2012 Dec]Running Away From the Barn
题目描述 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个. 输入格式 Line 1: 2 integers, N and L (1 <= N <= 200,0 ...
- 1.5V升3.3V芯片电路图,稳压3.3V供电MCU模块等
干电池1.5V可以升到3.3V,通过PW5100干电池升压IC,于外围3个元件:2个电容和一个电感即可组成1.5V升3.3V的电路系统. 干电池属于低能量的电池产品,不过一般使用到干电池的产品也是输出 ...
- ajax异步实现文件分片上传
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 论super().__init__()的用法
当我们调用 super() 的时候,实际上是实例化了一个 super 类. super 是个类,既不是关键字也不是函数等其他数据结构,该对象就是专门用来访问父类中的属性的(严格按照继承的关系). -- ...