首先让我们回顾下上节课讲的,用牛顿法计算√2的内容:

简单来说,牛顿法从x0=1不断向后计算逼近√2的值,而刚开始计算的精度是1,随着牛顿法的逼近(共log2d个循环),就能使得√2逼近值的精度达到d。在逼近过程中,精度的变化为Quadratic convergence二次收敛趋势(即1,2,4,6,....),为了证明这个,讲师给出了下图内容:

假设xn = √a (1+εn) 且εn随着n增加,不断趋于0,本质上来说就是xn = √a,加了(1+εn)是为了方便我们证明二次收敛的存在。之后根据牛顿法xi+1 = (xi + a/xi) /2对其进行xn+1的计算个,我们便能得到εn+1= εn/ 2(1+εn),而由于εn随着n增加,不断趋于0,所以(1+εn)本质为1,那么最后很容易就看出εn+1是跟εn成二次关系。

一、高精度乘法

另外上节课我们还讲了如何进行高精度乘法,这节课,讲师将它们总结并加以补充如下图所示:

以上五种方法,从上到下,时间复杂度逐渐减少,值得提到的就是,Toom-Cook方法本质跟Karatsuba方法一样的,只不过前者在数的拆分上多了一个而已,即前者为x0,x1,x2,而后者为x0,x1

二、高精度除法

问:如果我们想要计算一个关于a/b的高精度结果,该怎么做?

答:我们先计算R/b,然后对它结果向下取整,然后再用之前高精度乘法来乘a就好了。记住这里的R是一个非常大的值,特别的是R很容易除别人,例如R=2k这样的。

问:那请问R/b怎么计算

答:用牛顿法,具体过程如下图所示:

三、时间复杂度

问:高精度除法的时间复杂度是多少?

答,是Ο(log2n * nα),也可近似于Ο(nα),具体计算如下:

问:高精度乘法的时间复杂度是多少?

答,之前在第一部分就有不同方法下的时间复杂度,但总结来说就是Ο(nα) α≥1

问:高精度计算平方跟的时间复杂度是多少?

答:如下图所示,本质就是不断使用牛顿法配合高精度乘除法使用,结果近似为Ο(nα)。

有上面三个问题我们能得到:在时间复杂度上,高精度乘法 ≡ 高精度除法 ≡ 高精度求平方根 ≡ Ο(nα)。注意‘≡’为本质相同的意思,不代表完全相同,还是有略微差别的。

[MIT6.006] 12. Square Roots, Newton's Method 平方根,牛顿法的更多相关文章

  1. Square roots

    Loops are often used in programs that compute numerical results by starting with an approximate answ ...

  2. 牛顿法(Newton's Method)

    Newton's Method 在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓 ...

  3. 牛顿迭代法(Newton's Method)

    牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...

  4. 牛顿方法(Newton's Method)

    在讲义<线性回归.梯度下降>和<逻辑回归>中我们提到可以用梯度下降或梯度上升的方式求解θ.在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method). 牛顿方 ...

  5. Newton's Method

    在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓慢.牛顿法(Newton's M ...

  6. UVA 1426 - Discrete Square Roots(数论)

    UVA 1426 - Discrete Square Roots 题目链接 题意:给定X, N. R.要求r2≡x (mod n) (1 <= r < n)的全部解.R为一个已知解 思路: ...

  7. Jacobian矩阵、Hessian矩阵和Newton's method

    在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...

  8. 【cs229-Lecture4】Newton’s method

    之前我们在求Logistic回归时,用的是梯度上升算法,也就是要使得似然函数最大化,利用梯度上升算法,不断的迭代.这节课引出牛顿方法,它的作用和梯度上升算法的一样的,不同的是牛顿方法所需的迭代次数更少 ...

  9. 牛顿迭代法(Newton's Method)

    牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程. ...

随机推荐

  1. DDOS、CC、sql注入,跨站攻击防御方法

    web安全常见攻击解读--DDos.cc.sql注入.xss.CSRF 一,DDos https://www.cnblogs.com/sochishun/p/7081739.html#4111858 ...

  2. S3C6410 LCD驱动分析(转)

    一. 理论分析1. 几个概念:FIMC :    Fully Interactive Mobile Camera (完全交互式移动摄像机)FIMD:     Fully Interactive Mob ...

  3. 远程IO

    远程io 远程io ZLAN6842,ZLAN6844是8路远程O控制器.含有8路DI.8路DO,8路AI输入.其中DI支持干节点和湿节点,带光耦隔离:DO为继电器输出,具有5A 250VAC或5A ...

  4. 适合刚刚学习编程的萌新:C语言编程学习制作超简单又好玩的报数游戏!

    C语言是面向过程的,而C++是面向对象的 C和C++的区别: C是一个结构化语言,它的重点在于算法和数据结构.C程序的设计首要考虑的是如何通过一个过程,对输入(或环境条件)进行运算处理得到输出(或实现 ...

  5. linux(centos8):firewalld使用ipset管理ip地址的集合

    一,firewalld中ipset的用途: 1,用途 ipset是ip地址的集合, firewalld使用ipset可以在一条规则中处理多个ip地址, 执行效果更高 ​对ip地址集合的管理也更方便 2 ...

  6. nginx优化:worker_processes/worker_connections/worker_rlimit_nofile

    一,优化nginx的worker进程数 1,worker_processes应设置为多少? worker_processes 4; 如何设置这个值: worker_processes默认值是1,一般要 ...

  7. Java爬取同花顺股票数据(附源码)

    最近有小伙伴问我能不能抓取同花顺的数据,最近股票行情还不错,想把数据抓下来自己分析分析.我大A股,大家都知道的,一个概念火了,相应的股票就都大涨. 如果能及时获取股票涨跌信息,那就能在刚开始火起来的时 ...

  8. HTML轮播(1)

    前言 要想实现轮播,我们就得先把最基础的功能实现,那就是滚动,实现了滚动后就可以继续扩展,完成更多想要的效果 CSS <style> #LB { width: 100%; height: ...

  9. STC 核心板 入门记

    写在开始 STC核心板,它的软件十分全面,想要什么都有,非常适合新手入门. 上一次电赛刚结束,现在反正也啥也不太会,干脆学个这个吧. 顺便写篇博客记录一下. 记录第一次烧写 周四下单,周六到货.中午拿 ...

  10. 第二十七章 ansible变量介绍

    一.ansible变量介绍 1.概念 变量提供了便捷的方式来管理Ansible playbook的每一个项目中的动态值,比如nginx-1.6.3这个软件包的版本,在其它地方或许会反复使用,那么如果讲 ...