[MIT6.006] 12. Square Roots, Newton's Method 平方根,牛顿法
首先让我们回顾下上节课讲的,用牛顿法计算√2的内容:
简单来说,牛顿法从x0=1不断向后计算逼近√2的值,而刚开始计算的精度是1,随着牛顿法的逼近(共log2d个循环),就能使得√2逼近值的精度达到d。在逼近过程中,精度的变化为Quadratic convergence二次收敛趋势(即1,2,4,6,....),为了证明这个,讲师给出了下图内容:
假设xn = √a (1+εn) 且εn随着n增加,不断趋于0,本质上来说就是xn = √a,加了(1+εn)是为了方便我们证明二次收敛的存在。之后根据牛顿法xi+1 = (xi + a/xi) /2对其进行xn+1的计算个,我们便能得到εn+1= εn2 / 2(1+εn),而由于εn随着n增加,不断趋于0,所以(1+εn)本质为1,那么最后很容易就看出εn+1是跟εn成二次关系。
一、高精度乘法
另外上节课我们还讲了如何进行高精度乘法,这节课,讲师将它们总结并加以补充如下图所示:
以上五种方法,从上到下,时间复杂度逐渐减少,值得提到的就是,Toom-Cook方法本质跟Karatsuba方法一样的,只不过前者在数的拆分上多了一个而已,即前者为x0,x1,x2,而后者为x0,x1。
二、高精度除法
问:如果我们想要计算一个关于a/b的高精度结果,该怎么做?
答:我们先计算R/b,然后对它结果向下取整,然后再用之前高精度乘法来乘a就好了。记住这里的R是一个非常大的值,特别的是R很容易除别人,例如R=2k这样的。
问:那请问R/b怎么计算?
答:用牛顿法,具体过程如下图所示:
三、时间复杂度
问:高精度除法的时间复杂度是多少?
答,是Ο(log2n * nα),也可近似于Ο(nα),具体计算如下:
问:高精度乘法的时间复杂度是多少?
答,之前在第一部分就有不同方法下的时间复杂度,但总结来说就是Ο(nα) α≥1。
问:高精度计算平方跟的时间复杂度是多少?
答:如下图所示,本质就是不断使用牛顿法配合高精度乘除法使用,结果近似为Ο(nα)。
有上面三个问题我们能得到:在时间复杂度上,高精度乘法 ≡ 高精度除法 ≡ 高精度求平方根 ≡ Ο(nα)。注意‘≡’为本质相同的意思,不代表完全相同,还是有略微差别的。
[MIT6.006] 12. Square Roots, Newton's Method 平方根,牛顿法的更多相关文章
- Square roots
Loops are often used in programs that compute numerical results by starting with an approximate answ ...
- 牛顿法(Newton's Method)
Newton's Method 在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓 ...
- 牛顿迭代法(Newton's Method)
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...
- 牛顿方法(Newton's Method)
在讲义<线性回归.梯度下降>和<逻辑回归>中我们提到可以用梯度下降或梯度上升的方式求解θ.在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method). 牛顿方 ...
- Newton's Method
在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓慢.牛顿法(Newton's M ...
- UVA 1426 - Discrete Square Roots(数论)
UVA 1426 - Discrete Square Roots 题目链接 题意:给定X, N. R.要求r2≡x (mod n) (1 <= r < n)的全部解.R为一个已知解 思路: ...
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- 【cs229-Lecture4】Newton’s method
之前我们在求Logistic回归时,用的是梯度上升算法,也就是要使得似然函数最大化,利用梯度上升算法,不断的迭代.这节课引出牛顿方法,它的作用和梯度上升算法的一样的,不同的是牛顿方法所需的迭代次数更少 ...
- 牛顿迭代法(Newton's Method)
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程. ...
随机推荐
- K8S基础
四组基本概念 Pod/Pod控制器 Name/Namespace Label/Label选择器 Service/Ingress Pod Pod是k8s里能够被运行的最小的逻辑单元(原子单元) 1个Po ...
- 2017-01-26--编译Linux内核2.6.30版本报错解决
错误一: LD .tmp_vmlinux1 init/built-in.o: In function `run_init_process': /home/ox/tq2440/opt/EmbedSky/ ...
- 【图论】HDU 5961 传递
题目内容 题目链接 我们称一个有向图G是传递的当且仅当对任意三个不同的顶点a,若G中有 一条边从a到b且有一条边从b到c ,则G中同样有一条边从a到c. 我们称图G是一个竞赛图,当且仅当它是一个有向图 ...
- v-model数据绑定分析
v-model数据绑定分析 v-model是Vue提供的指令,其主要作用是可以实现在表单<input>.<textarea>及<select>等元素以及组件上创建双 ...
- java抓取东方财富股票数据(附源码)
背景 前段时间给朋友写了一个自动抓取同花顺股票数据的程序,不少人觉得不错. 这几天后台有粉丝给我留言让我也抓一下东方财富的数据,说东方财富的数据特别难抓,我还真不一定能搞得定. 本来我是一个德艺双磬且 ...
- 天猫精灵对接2(OAuth 搭建)
根据 接入方式及流程 中的说明,可知,搭建过程中,我们需要自己整一个 OAuth 的授权平台,具体说明可以参考蟋蟀大哥的文章 ASP.NET WebApi OWIN 实现 OAuth 2.0 ,我的 ...
- node初学
安装node.js 往往需要解析环境,但是现在直接安装时就已经配置好了, cmd打开 输入cd/ 在输入node -v 显示版本号 Node与php比较:https://www.techug.co ...
- win10使用U盘安装Linux系统教程
win10安装Linux系统详细教程 目前想要再Windows系统上安装Linux系统有三种方式:其一是安装在虚拟机上(VMWare或者VirtualBox),其二是使用win10最新支持的Linux ...
- Redis学习笔记(六)——数据结构之Set
一.介绍 Redis的Set是string类型的无序集合.集合成员是唯一的,这就意味着集合中不能出现重复的数据. Redis中集合是通过哈希表实现的,所以添加.删除.查找的复杂度都是O(1). 集合中 ...
- linux下生成动态库和链接动态库
1.生成动态库 src/test.h #ifndef _TEST_H_HH #define _TEST_H_HH void print(); #endif src/test.cpp #include ...