首先让我们回顾下上节课讲的,用牛顿法计算√2的内容:

简单来说,牛顿法从x0=1不断向后计算逼近√2的值,而刚开始计算的精度是1,随着牛顿法的逼近(共log2d个循环),就能使得√2逼近值的精度达到d。在逼近过程中,精度的变化为Quadratic convergence二次收敛趋势(即1,2,4,6,....),为了证明这个,讲师给出了下图内容:

假设xn = √a (1+εn) 且εn随着n增加,不断趋于0,本质上来说就是xn = √a,加了(1+εn)是为了方便我们证明二次收敛的存在。之后根据牛顿法xi+1 = (xi + a/xi) /2对其进行xn+1的计算个,我们便能得到εn+1= εn/ 2(1+εn),而由于εn随着n增加,不断趋于0,所以(1+εn)本质为1,那么最后很容易就看出εn+1是跟εn成二次关系。

一、高精度乘法

另外上节课我们还讲了如何进行高精度乘法,这节课,讲师将它们总结并加以补充如下图所示:

以上五种方法,从上到下,时间复杂度逐渐减少,值得提到的就是,Toom-Cook方法本质跟Karatsuba方法一样的,只不过前者在数的拆分上多了一个而已,即前者为x0,x1,x2,而后者为x0,x1

二、高精度除法

问:如果我们想要计算一个关于a/b的高精度结果,该怎么做?

答:我们先计算R/b,然后对它结果向下取整,然后再用之前高精度乘法来乘a就好了。记住这里的R是一个非常大的值,特别的是R很容易除别人,例如R=2k这样的。

问:那请问R/b怎么计算

答:用牛顿法,具体过程如下图所示:

三、时间复杂度

问:高精度除法的时间复杂度是多少?

答,是Ο(log2n * nα),也可近似于Ο(nα),具体计算如下:

问:高精度乘法的时间复杂度是多少?

答,之前在第一部分就有不同方法下的时间复杂度,但总结来说就是Ο(nα) α≥1

问:高精度计算平方跟的时间复杂度是多少?

答:如下图所示,本质就是不断使用牛顿法配合高精度乘除法使用,结果近似为Ο(nα)。

有上面三个问题我们能得到:在时间复杂度上,高精度乘法 ≡ 高精度除法 ≡ 高精度求平方根 ≡ Ο(nα)。注意‘≡’为本质相同的意思,不代表完全相同,还是有略微差别的。

[MIT6.006] 12. Square Roots, Newton's Method 平方根,牛顿法的更多相关文章

  1. Square roots

    Loops are often used in programs that compute numerical results by starting with an approximate answ ...

  2. 牛顿法(Newton's Method)

    Newton's Method 在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓 ...

  3. 牛顿迭代法(Newton's Method)

    牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...

  4. 牛顿方法(Newton's Method)

    在讲义<线性回归.梯度下降>和<逻辑回归>中我们提到可以用梯度下降或梯度上升的方式求解θ.在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method). 牛顿方 ...

  5. Newton's Method

    在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓慢.牛顿法(Newton's M ...

  6. UVA 1426 - Discrete Square Roots(数论)

    UVA 1426 - Discrete Square Roots 题目链接 题意:给定X, N. R.要求r2≡x (mod n) (1 <= r < n)的全部解.R为一个已知解 思路: ...

  7. Jacobian矩阵、Hessian矩阵和Newton's method

    在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...

  8. 【cs229-Lecture4】Newton’s method

    之前我们在求Logistic回归时,用的是梯度上升算法,也就是要使得似然函数最大化,利用梯度上升算法,不断的迭代.这节课引出牛顿方法,它的作用和梯度上升算法的一样的,不同的是牛顿方法所需的迭代次数更少 ...

  9. 牛顿迭代法(Newton's Method)

    牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程. ...

随机推荐

  1. K8S基础

    四组基本概念 Pod/Pod控制器 Name/Namespace Label/Label选择器 Service/Ingress Pod Pod是k8s里能够被运行的最小的逻辑单元(原子单元) 1个Po ...

  2. 2017-01-26--编译Linux内核2.6.30版本报错解决

    错误一: LD .tmp_vmlinux1 init/built-in.o: In function `run_init_process': /home/ox/tq2440/opt/EmbedSky/ ...

  3. 【图论】HDU 5961 传递

    题目内容 题目链接 我们称一个有向图G是传递的当且仅当对任意三个不同的顶点a,若G中有 一条边从a到b且有一条边从b到c ,则G中同样有一条边从a到c. 我们称图G是一个竞赛图,当且仅当它是一个有向图 ...

  4. v-model数据绑定分析

    v-model数据绑定分析 v-model是Vue提供的指令,其主要作用是可以实现在表单<input>.<textarea>及<select>等元素以及组件上创建双 ...

  5. java抓取东方财富股票数据(附源码)

    背景 前段时间给朋友写了一个自动抓取同花顺股票数据的程序,不少人觉得不错. 这几天后台有粉丝给我留言让我也抓一下东方财富的数据,说东方财富的数据特别难抓,我还真不一定能搞得定. 本来我是一个德艺双磬且 ...

  6. 天猫精灵对接2(OAuth 搭建)

    根据 接入方式及流程 中的说明,可知,搭建过程中,我们需要自己整一个 OAuth 的授权平台,具体说明可以参考蟋蟀大哥的文章  ASP.NET WebApi OWIN 实现 OAuth 2.0 ,我的 ...

  7. node初学

    安装node.js 往往需要解析环境,但是现在直接安装时就已经配置好了, cmd打开 输入cd/ 在输入node -v   显示版本号 Node与php比较:https://www.techug.co ...

  8. win10使用U盘安装Linux系统教程

    win10安装Linux系统详细教程 目前想要再Windows系统上安装Linux系统有三种方式:其一是安装在虚拟机上(VMWare或者VirtualBox),其二是使用win10最新支持的Linux ...

  9. Redis学习笔记(六)——数据结构之Set

    一.介绍 Redis的Set是string类型的无序集合.集合成员是唯一的,这就意味着集合中不能出现重复的数据. Redis中集合是通过哈希表实现的,所以添加.删除.查找的复杂度都是O(1). 集合中 ...

  10. linux下生成动态库和链接动态库

    1.生成动态库 src/test.h #ifndef _TEST_H_HH #define _TEST_H_HH void print(); #endif src/test.cpp #include ...