题意:$n$个点,求最小圆覆盖,$n \leq 5e5$


这题数据是随机的hhh

我们可以先求出凸包然后对凸包上的点求最小圆覆盖…(不过直接求应该也行?)

反正随便写好像都能过…

#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cmath>
using namespace std;
const int N=500005;
struct Point
{
double x,y;
int rnd;
Point(double x=0,double y=0):x(x),y(y){}
}p[N],s[N];
struct Line
{
double k,b;
};
inline bool cmp1(Point a,Point b)
{
if(a.x==b.x)return a.y<b.y;
return a.x<b.x;
}
inline bool cmp2(Point a,Point b)
{
return a.rnd<b.rnd;
}
inline Point operator +(Point a,Point b)
{
return Point(a.x+b.x,a.y+b.y);
}
inline Point operator -(Point a,Point b)
{
return Point(a.x-b.x,a.y-b.y);
} inline Point operator /(Point a,double d)
{
return Point(a.x/d,a.y/d);
}
inline double cross(Point a,Point b)
{
return a.x*b.y-a.y*b.x;
}
inline double sqr2(double x)
{
return x*x;
}
inline double dist(Point a,Point b)
{
return sqrt(sqr2(a.x-b.x)+sqr2(a.y-b.y));
}
inline Line getLine(double k,Point a)
{
Line res;res.k=k;
res.b=a.y-a.x*k;
return res;
}
inline Point getLineIntersection(Line l1,Line l2)
{
Point res;
res.x=(l2.b-l1.b)/(l1.k-l2.k);
res.y=res.x*l1.k+l1.b;
return res;
}
inline Point getCircle(Point a,Point b,Point c)
{
Point p1=(a+b)/2,p2=(a+c)/2;
double k1=-(b.x-a.x)/(b.y-a.y);
double k2=-(c.x-a.x)/(c.y-a.y);
Line l1=getLine(k1,p1),l2=getLine(k2,p2);
return getLineIntersection(l1,l2);
}
inline Point minCircle(double &r,int n)
{
for(register int i=1;i<=n;i++)s[i].rnd=rand();
sort(s+1,s+n+1,cmp2);
Point o=s[1];r=0;
for(register int i=2;i<=n;i++)if(r<dist(o,s[i]))
{
o=s[i];r=0;
for(register int j=1;j<i;j++)if(r<dist(o,s[j]))
{
o=(s[i]+s[j])/2;
r=dist(o,s[i]);
for(register int k=1;k<j;k++)if(r<dist(o,s[k]))
{
o=getCircle(s[i],s[j],s[k]);
r=dist(o,s[i]);
}
}
}
return o;
}
inline int convexHull(int n)
{
sort(p+1,p+n+1,cmp1);
int t=0,k;
for(register int i=1;i<=n;i++)
{
while(t>1&&cross(s[t]-s[t-1],p[i]-s[t-1])<0)t--;
s[++t]=p[i];
}
k=t;
for(register int i=n-1;i>=1;i--)
{
while(t>k&&cross(s[t]-s[t-1],p[i]-s[t-1])<0)t--;
s[++t]=p[i];
}
if(n>1)t--;
return t;
}
int main()
{
int n;scanf("%d",&n);
for(register int i=1;i<=n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
int t=convexHull(n);double r;
Point res=minCircle(r,t);
printf("%.2lf %.2lf %.2lf",res.x,res.y,r);
return 0;
}

[日常摸鱼]bzoj2823 [AHOI2012]信号塔的更多相关文章

  1. bzoj2823[AHOI2012]信号塔

    2823: [AHOI2012]信号塔 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1190  Solved: 545[Submit][Status ...

  2. BZOJ2823 [AHOI2012]信号塔 【最小圆覆盖】

    题目链接 BZOJ2823 题解 最小圆覆盖模板 都懒得再写一次 #include<iostream> #include<cstdio> #include<cmath&g ...

  3. bzoj2823: [AHOI2012]信号塔&&1336: [Balkan2002]Alien最小圆覆盖&&1337: 最小圆覆盖

    首先我写了个凸包就溜了 这是最小圆覆盖问题,今晚学了一下 先随机化点,一个个加入 假设当前圆心为o,半径为r,加入的点为i 若i不在圆里面,令圆心为i,半径为0 再重新从1~i-1不停找j不在圆里面, ...

  4. 【BZOJ2823】[AHOI2012]信号塔(最小圆覆盖)

    [BZOJ2823][AHOI2012]信号塔(最小圆覆盖) 题面 BZOJ 洛谷 相同的题: BZOJ1 BZOJ2 洛谷 题解 模板题... #include<iostream> #i ...

  5. 2018.07.04 BZOJ 2823: AHOI2012信号塔(最小圆覆盖)

    2823: [AHOI2012]信号塔 Time Limit: 10 Sec Memory Limit: 128 MB Description 在野外训练中,为了确保每位参加集训的成员安全,实时的掌握 ...

  6. 【bzoj2823】 AHOI2012—信号塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2823 (题目链接) 题意 求最小圆覆盖 Solution 关于最小圆覆盖的做法,论文里面都有.其实真 ...

  7. (bzoj1337 || 洛谷P1742 最小圆覆盖 )|| (bzoj2823 || 洛谷P2533 [AHOI2012]信号塔)

    bzoj1337 洛谷P1742 用随机增量法.讲解:https://blog.csdn.net/jokerwyt/article/details/79221345 设点集A的最小覆盖圆为g(A) 可 ...

  8. 【BZOJ】2823: [AHOI2012]信号塔

    题意 给\(n\)个点,求一个能覆盖所有点的面积最小的圆.(\(n \le 50000\)) 分析 随机增量法 题解 理论上\(O(n^3)\)暴力,实际上加上随机化后期望是\(O(n)\)的. 算法 ...

  9. BZOJ 2823: [AHOI2012]信号塔

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2823 随机增量法.不断加点维护圆,主要是三点共圆那里打得烦(其实也就是个两中垂线求交点+联立方 ...

随机推荐

  1. Spring-Boot项目中配置redis注解缓存

    Spring-Boot项目中配置redis注解缓存 在pom中添加redis缓存支持依赖 <dependency> <groupId>org.springframework.b ...

  2. MathType如何对齐公式

    作为强大的公式编辑器,MathType为我们的学习.工作带来了极大的便利.比如在写论文时,有了它,就可以轻松就把论文里的公式码完:老师在编写试卷时,利用它,可以快速编写出一份试卷.那么在编写公式时,也 ...

  3. C# redis集群批量操作之slot计算出16384个字符串

    引入一个大家都用的到的需求来说吧. 需求:要在三主三从的redis集群,存入数据,会对数据进行批量删除操作,数据要求要在redis集群负载均衡. 思路: 1.存入数据好办 1 var connect ...

  4. Python基础整理,懒得分类了,大家对付看看吧

    第一次搞这么多图

  5. CSP-SJX2019 解题报告

    T1 日期 日高于 \(31\) 或等于 \(00\) 的要修改 \(1\) 次. 月高于 \(12\) 或等于 \(00\) 的要修改 \(1\) 次. 月等于 \(02\) 且日大于 \(28\) ...

  6. C++之父接受采访:对 C++ 成功的关键和发展历程进行了回顾

    C++ 的起源可以追溯到 40 年前,但它仍然是当今使用最广泛的编程语言之一. 到 2020 年 9 月为止,C++ 是仅次于 C 语言.Java 和 Python,位于全球第四的编程语言.根据最新的 ...

  7. 知识点回顾——C语言知识点复习梳理,看看你是不是都完全掌握了

    前段时间,我分享了关于C语言的一些必备知识点,感兴趣的朋友可以查看我的往期文章,或是关注公众号c语言进阶之路,查看次条文章,或搜索关键字"编程小白基础必备",就能查看相关文章了. ...

  8. PowerManagerService流程分析

    一.PowerManagerService简介 PowerManagerService主要服务Android系统电源管理工作,这样讲比较笼统,就具体细节上大致可以认为PowerManagerServi ...

  9. V-指令,细节补充

    v-for遍历对象的时候 v-for=" (item) in person" 这里item是person对象里面的value值 而v-for=" (item,key) i ...

  10. 学JAVA的艰难之路

    周五回家了,这两天也没有更新代码系列,很抱歉,之后会补上.今天刚到宿舍,写了会代码,想用一个数组的从键盘输入,再也弄不好了,最终在我不断的翻之前写的代码,终于是找到了一个例子,真的不容易,编程这东西, ...