bzoj4695 最假女选手(势能线段树/吉司机线段树)题解
题意:
已知\(n\)个数字,进行以下操作:
- \(1.\)给一个区间\([L,R]\) 加上一个数\(x\)
- \(2.\)把一个区间\([L,R]\) 里小于\(x\) 的数变成\(x\)
- \(3.\)把一个区间\([L,R]\) 里大于\(x\) 的数变成\(x\)
- \(4.\)求区间\([L,R]\)的和
- \(5.\)求区间\([L,R]\)的最大值
- \(6.\)求区间\([L,R]\) 的最小值
思路:
吉司机线段树。
假如我们要进行把一个区间\([L,R]\) 里小于\(x\) 的数变成\(x\)。那么我们可以维护一个最小值\(Min\)和次小值\(sMin\)和最小值数量\(Minlen\)。那么,当\(Min\geq x\)时,显然这个区间不需要操作;当\(Min<x\)且\(sMin>x\)时,这时只要更新\(Min=x\);当\(sMin\leq x\)时,继续往下\(dfs\)。操作\(3\)也是同理。
因为这里是没设重置的标记的,所以在\(pushdown\)时如果子节点和父节点产生冲突,那么以父节点为准。
复杂度\(O(mlog^2n)\),\(m\)为操作数。
有点卡常。
代码:
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn = 5e5 + 5;
const int MAXM = 3e6;
const ll MOD = 998244353;
const ull seed = 131;
const int INF = 1 << 30;
#define lson (rt << 1)
#define rson (rt << 1 | 1)
int a[maxn];
int Max[maxn << 2], Min[maxn << 2], sMax[maxn << 2], sMin[maxn << 2];
int Maxlen[maxn << 2], Minlen[maxn << 2];
ll sum[maxn << 2];
int lazy[maxn << 2];
inline void pushup(int rt){ //这边建议加上inline
sum[rt] = sum[lson] + sum[rson];
if(Max[lson] < Max[rson]){
Max[rt] = Max[rson];
Maxlen[rt] = Maxlen[rson];
sMax[rt] = max(sMax[rson], Max[lson]);
}
if(Max[lson] > Max[rson]){
Max[rt] = Max[lson];
Maxlen[rt] = Maxlen[lson];
sMax[rt] = max(sMax[lson], Max[rson]);
}
if(Max[lson] == Max[rson]){
Max[rt] = Max[lson];
Maxlen[rt] = Maxlen[lson] + Maxlen[rson];
sMax[rt] = max(sMax[lson], sMax[rson]);
}
if(Min[lson] > Min[rson]){
Min[rt] = Min[rson];
Minlen[rt] = Minlen[rson];
sMin[rt] = min(sMin[rson], Min[lson]);
}
if(Min[lson] < Min[rson]){
Min[rt] = Min[lson];
Minlen[rt] = Minlen[lson];
sMin[rt] = min(sMin[lson], Min[rson]);
}
if(Min[lson] == Min[rson]){
Min[rt] = Min[lson];
Minlen[rt] = Minlen[lson] + Minlen[rson];
sMin[rt] = min(sMin[lson], sMin[rson]);
}
}
inline void pushdown(int rt, int l, int r){
int m = (l + r) >> 1;
if(lazy[rt]){
sum[lson] += 1LL * (m - l + 1) * lazy[rt];
sum[rson] += 1LL * (r - m) * lazy[rt];
Max[lson] += lazy[rt];
Max[rson] += lazy[rt];
sMax[lson] += lazy[rt];
sMax[rson] += lazy[rt];
Min[lson] += lazy[rt];
Min[rson] += lazy[rt];
sMin[lson] += lazy[rt];
sMin[rson] += lazy[rt];
lazy[lson] += lazy[rt];
lazy[rson] += lazy[rt];
lazy[rt] = 0;
}
if(Max[lson] > Max[rt]){ //要和父节点保持一致
if(sMax[lson] == Max[lson]) sMax[lson] = Max[rt];
if(Min[lson] == Max[lson]) Min[lson] = Max[rt];
if(sMin[lson] == Max[lson]) sMin[lson] = Max[rt];
sum[lson] += 1LL * (Max[rt] - Max[lson]) * Maxlen[lson];
Max[lson] = Max[rt];
}
if(Max[rson] > Max[rt]){
if(sMax[rson] == Max[rson]) sMax[rson] = Max[rt];
if(Min[rson] == Max[rson]) Min[rson] = Max[rt];
if(sMin[rson] == Max[rson]) sMin[rson] = Max[rt];
sum[rson] += 1LL * (Max[rt] - Max[rson]) * Maxlen[rson];
Max[rson] = Max[rt];
}
if(Min[lson] < Min[rt]){
if(sMin[lson] == Min[lson]) sMin[lson] = Min[rt];
if(Max[lson] == Min[lson]) Max[lson] = Min[rt];
if(sMax[lson] == Min[lson]) sMax[lson] = Min[rt];
sum[lson] += 1LL * (Min[rt] - Min[lson]) * Minlen[lson];
Min[lson] = Min[rt];
}
if(Min[rson] < Min[rt]){
if(sMin[rson] == Min[rson]) sMin[rson] = Min[rt];
if(Max[rson] == Min[rson]) Max[rson] = Min[rt];
if(sMax[rson] == Min[rson]) sMax[rson] = Min[rt];
sum[rson] += 1LL * (Min[rt] - Min[rson]) * Minlen[rson];
Min[rson] = Min[rt];
}
}
void build(int l, int r, int rt){
lazy[rt] = 0;
if(l == r){
sum[rt] = Max[rt] = Min[rt] = a[l];
sMax[rt] = -INF;
sMin[rt] = INF;
Maxlen[rt] = Minlen[rt] = 1;
return;
}
int m = (l + r) >> 1;
build(l, m, lson);
build(m + 1, r, rson);
pushup(rt);
}
void add(int L, int R, int l, int r, int v, int rt){
if(L <= l && R >= r){
sum[rt] += 1LL * v * (r - l + 1);
Max[rt] += v;
Min[rt] += v;
sMax[rt] += v;
sMin[rt] += v;
lazy[rt] += v;
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
add(L, R, l, m, v, lson);
if(R > m)
add(L, R, m + 1, r, v, rson);
pushup(rt);
}
void Less(int L, int R, int l, int r, int v, int rt){
if(Min[rt] >= v) return;
if(L <= l && R >= r && sMin[rt] > v){//>保证Minlen不变
if(Max[rt] == Min[rt]) Max[rt] = v;
if(sMax[rt] == Min[rt]) sMax[rt] = v;
sum[rt] += 1LL * (v - Min[rt]) * Minlen[rt] ;
Min[rt] = v;
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
Less(L, R, l, m, v, lson);
if(R > m)
Less(L, R, m + 1, r, v, rson);
pushup(rt);
}
void More(int L, int R, int l, int r, int v, int rt){
if(Max[rt] <= v) return;
if(L <= l && R >= r && sMax[rt] < v){ //<保证Maxlen不变
if(Min[rt] == Max[rt]) Min[rt] = v;
if(sMin[rt] == Max[rt]) sMin[rt] = v;
sum[rt] += 1LL * (v - Max[rt]) * Maxlen[rt];
Max[rt] = v;
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
More(L, R, l, m, v, lson);
if(R > m)
More(L, R, m + 1, r, v, rson);
pushup(rt);
}
ll querySum(int L, int R, int l, int r, int rt){
if(L <= l && R >= r){
return sum[rt];
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
ll ret = 0;
if(L <= m)
ret += querySum(L, R, l, m, lson);
if(R > m)
ret += querySum(L, R, m + 1, r, rson);
return ret;
}
int queryMax(int L, int R, int l, int r, int rt){
if(L <= l && R >= r){
return Max[rt];
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
int MAX = -INF;
if(L <= m)
MAX = max(MAX, queryMax(L, R, l, m, lson));
if(R > m)
MAX = max(MAX, queryMax(L, R, m + 1, r, rson));
return MAX;
}
int queryMin(int L, int R, int l, int r, int rt){
if(L <= l && R >= r){
return Min[rt];
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
int MIN = INF;
if(L <= m)
MIN = min(MIN, queryMin(L, R, l, m, lson));
if(R > m)
MIN = min(MIN, queryMin(L, R, m + 1, r, rson));
return MIN;
}
inline bool read(int &num){
char in;
bool IsN=false;
in = getchar();
if(in == EOF) return false;
while(in != '-' && (in < '0' || in > '9')) in = getchar();
if(in == '-'){ IsN = true; num = 0;}
else num = in - '0';
while(in = getchar(),in >= '0' && in <= '9'){
num *= 10, num += in-'0';
}
if(IsN) num = -num;
return true;
}
int main(){
int n;
read(n);
for(int i = 1; i <= n; i++) read(a[i]);
build(1, n, 1);
int m;
read(m);
while(m--){
int l, r, x, op;
read(op), read(l), read(r);
if(op <= 3) read(x);
if(op == 1) add(l, r, 1, n, x, 1);
else if(op == 2) Less(l, r, 1, n, x, 1);
else if(op == 3) More(l, r, 1, n, x, 1);
else if(op == 4) printf("%lld\n", querySum(l, r, 1, n, 1));
else if(op == 5) printf("%d\n", queryMax(l, r, 1, n, 1));
else printf("%d\n", queryMin(l, r, 1, n, 1));
}
return 0;
}
bzoj4695 最假女选手(势能线段树/吉司机线段树)题解的更多相关文章
- BZOJ4695 最假女选手(势能线段树)
BZOJ题目传送门 终于体会到初步掌握势能分析思想的重要性了. 一开始看题,感觉套路还是很一般啊qwq.直接在线段树上维护最大值和最小值,每次递归更新的时候,如果不能完全覆盖就暴力递归下去.挺好写的欸 ...
- 2018.07.27 bzoj4695: 最假女选手(线段树)
传送门 线段树好题 支持区间加,区间取min" role="presentation" style="position: relative;"> ...
- bzoj4695 最假女选手
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4695 [题解] SegmentTree beats!(见jiry_2论文/营员交流) 考虑只 ...
- [BZOJ4695]最假女选手:segment tree beats!
分析 segment tree beats!模板题. 看了gxz的博客突然发现自己写的mxbt和mnbt两个标记没用诶. 代码 #include <bits/stdc++.h> #defi ...
- bzoj 4695 最假女选手 吉利线段树
最假女选手 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 480 Solved: 118[Submit][Status][Discuss] Desc ...
- BZOJ.4695.最假女选手(线段树 Segment tree Beats!)
题目链接 区间取\(\max,\ \min\)并维护区间和是普通线段树无法处理的. 对于操作二,维护区间最小值\(mn\).最小值个数\(t\).严格次小值\(se\). 当\(mn\geq x\)时 ...
- BZOJ4695:最假女选手
浅谈区间最值操作和历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html 题目传送门:https://lydsy.com/JudgeOnline/pr ...
- bzoj 4695: 最假女选手 && Gorgeous Sequence HDU - 5306 && (bzoj5312 冒险 || 小B的序列) && bzoj4355: Play with sequence
算导: 核算法 给每种操作一个摊还代价(是手工定义的),给数据结构中某些东西一个“信用”值(不是手动定义的,是被动产生的),摊还代价等于实际代价+信用变化量. 当实际代价小于摊还代价时,增加等于差额的 ...
- HDU - 5306 Gorgeous Sequence (吉司机线段树)
题目链接 吉司机线段树裸题... #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f3 ...
随机推荐
- Linux下pcstat安装踩坑教程
首先安装golang 1.进入官方链接下载对应自己系统版本的Golang安装包:https://dl.google.com/go/go1.13.4.linux-amd64.tar.gz root@ub ...
- 蓝 / 绿部署(Blue/Green) 金丝雀发布(Canary Release) 功能标记(Feature Flagging)
https://www.cnblogs.com/apanly/p/8784096.html 最终,我选择了 GraphQL 作为企业 API 网关 蓝 / 绿部署(Blue/Green) 金丝雀发布( ...
- secure hashes message digests 安全哈希 消息摘要
hashlib --- 安全哈希与消息摘要 - Python 3.8.3 文档 https://docs.python.org/zh-cn/3.8/library/hashlib.html hashl ...
- 1.4.1 对象与JSON转化 1.4.2 JSON与List集合转化 1.1.1 获取json中的属性 day10-05
1.1.1 对象与JSON转化 @Test public void toJSON() throws IOException{ Jedis jedis = new Jedis("192.168 ...
- 外观模式(Facade) Adapter及Proxy 设计模式之间的关系 flume 云服务商多个sdk的操作 face
小结: 1. 外观模式/门面模式 Facade 往是多个类或其它程序单元,通过重新组合各类及程序单元,对外提供统一的接口/界面. Proxy(代理)注重在为Client-Subject提供一个访问的 ...
- LOJ10199轻拍牛头
题目描述 原题来自:USACO 2008 Dec. Silver 今天是 Bessie 的生日,并且现在是聚会的游戏时间.Bessie 让编号为 1~N 的 N 头奶牛围成一个圈坐(所以除了最后一头牛 ...
- HMS Core华为分析丨受众细分,多场景促进精益运营
用户的偏好不同,对产品的需求也不一样,要想更好地培养用户粘性,就需要因人施策,精细化运营,而受众细分是精细化运营的重要方法之一.受众细分是根据用户属性和行为数据,将具有相同或类似特征的用户归为一个群组 ...
- TCP IP SOCKET 笔记
网络由下往上分为 物理层.数据链路层.网络层.传输层.会话层.表示层和应用层. 通过初步的了解,我知道IP协议对应于网络层,TCP协议对应于传输层,而HTTP协议对应于应用层, 三者从本质上来说没有可 ...
- Native vlan
1.本征 VLAN即Native Vlan Native Vlan和其他Vlan的另外一个区别在于:非Native Vlan在trunk中传输数据时要被添加Vlan标记的(如dot1q或者isl),但 ...
- 90% 的 Java 程序员都说不上来的为何 Java 代码越执行越快(2)- TLAB预热
经常听到 Java 性能不如 C/C++ 的言论,也经常听说 Java 程序需要预热,那么其中主要原因是啥呢? 面试的时候谈到 JVM,也有很多面试官喜欢问,为啥 Java 程序越执行越快呢? 一般人 ...