题意:

已知\(n\)个数字,进行以下操作:

  • \(1.\)给一个区间\([L,R]\) 加上一个数\(x\)
  • \(2.\)把一个区间\([L,R]\) 里小于\(x\) 的数变成\(x\)
  • \(3.\)把一个区间\([L,R]\) 里大于\(x\) 的数变成\(x\)
  • \(4.\)求区间\([L,R]\)的和
  • \(5.\)求区间\([L,R]\)的最大值
  • \(6.\)求区间\([L,R]\) 的最小值

思路:

吉司机线段树。

假如我们要进行把一个区间\([L,R]\) 里小于\(x\) 的数变成\(x\)。那么我们可以维护一个最小值\(Min\)和次小值\(sMin\)和最小值数量\(Minlen\)。那么,当\(Min\geq x\)时,显然这个区间不需要操作;当\(Min<x\)且\(sMin>x\)时,这时只要更新\(Min=x\);当\(sMin\leq x\)时,继续往下\(dfs\)。操作\(3\)也是同理。

因为这里是没设重置的标记的,所以在\(pushdown\)时如果子节点和父节点产生冲突,那么以父节点为准。

复杂度\(O(mlog^2n)\),\(m\)为操作数。

有点卡常。

代码:

#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn = 5e5 + 5;
const int MAXM = 3e6;
const ll MOD = 998244353;
const ull seed = 131;
const int INF = 1 << 30; #define lson (rt << 1)
#define rson (rt << 1 | 1)
int a[maxn];
int Max[maxn << 2], Min[maxn << 2], sMax[maxn << 2], sMin[maxn << 2];
int Maxlen[maxn << 2], Minlen[maxn << 2];
ll sum[maxn << 2];
int lazy[maxn << 2];
inline void pushup(int rt){ //这边建议加上inline
sum[rt] = sum[lson] + sum[rson]; if(Max[lson] < Max[rson]){
Max[rt] = Max[rson];
Maxlen[rt] = Maxlen[rson];
sMax[rt] = max(sMax[rson], Max[lson]);
}
if(Max[lson] > Max[rson]){
Max[rt] = Max[lson];
Maxlen[rt] = Maxlen[lson];
sMax[rt] = max(sMax[lson], Max[rson]);
}
if(Max[lson] == Max[rson]){
Max[rt] = Max[lson];
Maxlen[rt] = Maxlen[lson] + Maxlen[rson];
sMax[rt] = max(sMax[lson], sMax[rson]);
} if(Min[lson] > Min[rson]){
Min[rt] = Min[rson];
Minlen[rt] = Minlen[rson];
sMin[rt] = min(sMin[rson], Min[lson]);
}
if(Min[lson] < Min[rson]){
Min[rt] = Min[lson];
Minlen[rt] = Minlen[lson];
sMin[rt] = min(sMin[lson], Min[rson]);
}
if(Min[lson] == Min[rson]){
Min[rt] = Min[lson];
Minlen[rt] = Minlen[lson] + Minlen[rson];
sMin[rt] = min(sMin[lson], sMin[rson]);
}
}
inline void pushdown(int rt, int l, int r){
int m = (l + r) >> 1;
if(lazy[rt]){
sum[lson] += 1LL * (m - l + 1) * lazy[rt];
sum[rson] += 1LL * (r - m) * lazy[rt];
Max[lson] += lazy[rt];
Max[rson] += lazy[rt];
sMax[lson] += lazy[rt];
sMax[rson] += lazy[rt];
Min[lson] += lazy[rt];
Min[rson] += lazy[rt];
sMin[lson] += lazy[rt];
sMin[rson] += lazy[rt];
lazy[lson] += lazy[rt];
lazy[rson] += lazy[rt];
lazy[rt] = 0;
}
if(Max[lson] > Max[rt]){ //要和父节点保持一致
if(sMax[lson] == Max[lson]) sMax[lson] = Max[rt];
if(Min[lson] == Max[lson]) Min[lson] = Max[rt];
if(sMin[lson] == Max[lson]) sMin[lson] = Max[rt];
sum[lson] += 1LL * (Max[rt] - Max[lson]) * Maxlen[lson];
Max[lson] = Max[rt];
}
if(Max[rson] > Max[rt]){
if(sMax[rson] == Max[rson]) sMax[rson] = Max[rt];
if(Min[rson] == Max[rson]) Min[rson] = Max[rt];
if(sMin[rson] == Max[rson]) sMin[rson] = Max[rt];
sum[rson] += 1LL * (Max[rt] - Max[rson]) * Maxlen[rson];
Max[rson] = Max[rt];
}
if(Min[lson] < Min[rt]){
if(sMin[lson] == Min[lson]) sMin[lson] = Min[rt];
if(Max[lson] == Min[lson]) Max[lson] = Min[rt];
if(sMax[lson] == Min[lson]) sMax[lson] = Min[rt];
sum[lson] += 1LL * (Min[rt] - Min[lson]) * Minlen[lson];
Min[lson] = Min[rt];
}
if(Min[rson] < Min[rt]){
if(sMin[rson] == Min[rson]) sMin[rson] = Min[rt];
if(Max[rson] == Min[rson]) Max[rson] = Min[rt];
if(sMax[rson] == Min[rson]) sMax[rson] = Min[rt];
sum[rson] += 1LL * (Min[rt] - Min[rson]) * Minlen[rson];
Min[rson] = Min[rt];
}
}
void build(int l, int r, int rt){
lazy[rt] = 0;
if(l == r){
sum[rt] = Max[rt] = Min[rt] = a[l];
sMax[rt] = -INF;
sMin[rt] = INF;
Maxlen[rt] = Minlen[rt] = 1;
return;
}
int m = (l + r) >> 1;
build(l, m, lson);
build(m + 1, r, rson);
pushup(rt);
}
void add(int L, int R, int l, int r, int v, int rt){
if(L <= l && R >= r){
sum[rt] += 1LL * v * (r - l + 1);
Max[rt] += v;
Min[rt] += v;
sMax[rt] += v;
sMin[rt] += v;
lazy[rt] += v;
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
add(L, R, l, m, v, lson);
if(R > m)
add(L, R, m + 1, r, v, rson);
pushup(rt);
}
void Less(int L, int R, int l, int r, int v, int rt){
if(Min[rt] >= v) return;
if(L <= l && R >= r && sMin[rt] > v){//>保证Minlen不变
if(Max[rt] == Min[rt]) Max[rt] = v;
if(sMax[rt] == Min[rt]) sMax[rt] = v;
sum[rt] += 1LL * (v - Min[rt]) * Minlen[rt] ;
Min[rt] = v;
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
Less(L, R, l, m, v, lson);
if(R > m)
Less(L, R, m + 1, r, v, rson);
pushup(rt);
}
void More(int L, int R, int l, int r, int v, int rt){
if(Max[rt] <= v) return;
if(L <= l && R >= r && sMax[rt] < v){ //<保证Maxlen不变
if(Min[rt] == Max[rt]) Min[rt] = v;
if(sMin[rt] == Max[rt]) sMin[rt] = v;
sum[rt] += 1LL * (v - Max[rt]) * Maxlen[rt];
Max[rt] = v;
return;
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
if(L <= m)
More(L, R, l, m, v, lson);
if(R > m)
More(L, R, m + 1, r, v, rson);
pushup(rt);
}
ll querySum(int L, int R, int l, int r, int rt){
if(L <= l && R >= r){
return sum[rt];
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
ll ret = 0;
if(L <= m)
ret += querySum(L, R, l, m, lson);
if(R > m)
ret += querySum(L, R, m + 1, r, rson);
return ret;
}
int queryMax(int L, int R, int l, int r, int rt){
if(L <= l && R >= r){
return Max[rt];
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
int MAX = -INF;
if(L <= m)
MAX = max(MAX, queryMax(L, R, l, m, lson));
if(R > m)
MAX = max(MAX, queryMax(L, R, m + 1, r, rson));
return MAX;
}
int queryMin(int L, int R, int l, int r, int rt){
if(L <= l && R >= r){
return Min[rt];
}
pushdown(rt, l, r);
int m = (l + r) >> 1;
int MIN = INF;
if(L <= m)
MIN = min(MIN, queryMin(L, R, l, m, lson));
if(R > m)
MIN = min(MIN, queryMin(L, R, m + 1, r, rson));
return MIN;
}
inline bool read(int &num){
char in;
bool IsN=false;
in = getchar();
if(in == EOF) return false;
while(in != '-' && (in < '0' || in > '9')) in = getchar();
if(in == '-'){ IsN = true; num = 0;}
else num = in - '0';
while(in = getchar(),in >= '0' && in <= '9'){
num *= 10, num += in-'0';
}
if(IsN) num = -num;
return true;
} int main(){
int n;
read(n);
for(int i = 1; i <= n; i++) read(a[i]);
build(1, n, 1);
int m;
read(m);
while(m--){
int l, r, x, op;
read(op), read(l), read(r);
if(op <= 3) read(x);
if(op == 1) add(l, r, 1, n, x, 1);
else if(op == 2) Less(l, r, 1, n, x, 1);
else if(op == 3) More(l, r, 1, n, x, 1);
else if(op == 4) printf("%lld\n", querySum(l, r, 1, n, 1));
else if(op == 5) printf("%d\n", queryMax(l, r, 1, n, 1));
else printf("%d\n", queryMin(l, r, 1, n, 1));
}
return 0;
}

bzoj4695 最假女选手(势能线段树/吉司机线段树)题解的更多相关文章

  1. BZOJ4695 最假女选手(势能线段树)

    BZOJ题目传送门 终于体会到初步掌握势能分析思想的重要性了. 一开始看题,感觉套路还是很一般啊qwq.直接在线段树上维护最大值和最小值,每次递归更新的时候,如果不能完全覆盖就暴力递归下去.挺好写的欸 ...

  2. 2018.07.27 bzoj4695: 最假女选手(线段树)

    传送门 线段树好题 支持区间加,区间取min" role="presentation" style="position: relative;"> ...

  3. bzoj4695 最假女选手

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4695 [题解] SegmentTree beats!(见jiry_2论文/营员交流) 考虑只 ...

  4. [BZOJ4695]最假女选手:segment tree beats!

    分析 segment tree beats!模板题. 看了gxz的博客突然发现自己写的mxbt和mnbt两个标记没用诶. 代码 #include <bits/stdc++.h> #defi ...

  5. bzoj 4695 最假女选手 吉利线段树

    最假女选手 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 480  Solved: 118[Submit][Status][Discuss] Desc ...

  6. BZOJ.4695.最假女选手(线段树 Segment tree Beats!)

    题目链接 区间取\(\max,\ \min\)并维护区间和是普通线段树无法处理的. 对于操作二,维护区间最小值\(mn\).最小值个数\(t\).严格次小值\(se\). 当\(mn\geq x\)时 ...

  7. BZOJ4695:最假女选手

    浅谈区间最值操作和历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html 题目传送门:https://lydsy.com/JudgeOnline/pr ...

  8. bzoj 4695: 最假女选手 && Gorgeous Sequence HDU - 5306 && (bzoj5312 冒险 || 小B的序列) && bzoj4355: Play with sequence

    算导: 核算法 给每种操作一个摊还代价(是手工定义的),给数据结构中某些东西一个“信用”值(不是手动定义的,是被动产生的),摊还代价等于实际代价+信用变化量. 当实际代价小于摊还代价时,增加等于差额的 ...

  9. HDU - 5306 Gorgeous Sequence (吉司机线段树)

    题目链接 吉司机线段树裸题... #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f3 ...

随机推荐

  1. 二十七:XSS跨站之代码及httponly绕过

    httponly:如果给某个 cookie 设置了 httpOnly 属性,则无法通过 JS 脚本 读取到该 cookie 的信息,但还Application 中手动修改 cookie,所以只是在一定 ...

  2. 面试必问:如何实现Redis分布式锁

    摘要:今天我们来聊聊分布式锁这块知识,具体的来看看Redis分布式锁的实现原理. 一.写在前面 现在面试,一般都会聊聊分布式系统这块的东西.通常面试官都会从服务框架(Spring Cloud.Dubb ...

  3. 代码托管从业者 Git 指南

    本文作者:李博文 - CODING 后端开发工程师 前言 六七年前,我机缘巧合进入了代码托管行业,做过基于 Git 支持 SVN 客户端接入.Git 代码托管平台分布式.Git 代码托管读写分离.Gi ...

  4. error Unexpected use of comma operator no-sequences解决过程

    error Unexpected use of comma operator no-sequences解决过程 报错内容: ERROR in ./pages/course/_id.vue friend ...

  5. 提供个HDFS的目录的路径,对该目录进行创建和删除操作。创建目录时,如果目录 文件所在目录不存在则自动创建相应目录;删除目录时,由用户指定当该目录不为空时是否还删 除该目录

    import java.io.IOException; import java.util.Scanner; import org.apache.hadoop.fs.*; public class G_ ...

  6. 。SLI,Service Level Indicator,服务等级指标,其实就是我们选择哪些指标来衡量我们的稳定性。而 SLO,Service Level Objective,服务等级目标,指的就是我们设定的稳定性目标,比如“几个 9”这样的目标。

    .SLI,Service Level Indicator,服务等级指标,其实就是我们选择哪些指标来衡量我们的稳定性.而 SLO,Service Level Objective,服务等级目标,指的就是我 ...

  7. Salt (cryptography)

    Salt (cryptography) Here is an incomplete example of a salt value for storing passwords. This first ...

  8. AWS Lightsail 开启 Root 登陆权限

    将下面代码中的第一句中的 Passwd 改为自己将要设置的密码,否则默认 root 密码为 Passwd. #!/bin/bash echo root:Passwd |sudo chpasswd ro ...

  9. 邮件解析 CNAME记录 A记录 NS记录 MX记录

    域名配置 示例发信配置请至域名 service.i-test.cn DNS服务提供商处添加TXT记录,并保持SPF记录正确,否则会无法发信.*1.所有权验证类型 主机记录 主域名 记录值 状态TXT ...

  10. Python中,单引号,双引号,三引号的使用区别与原因

    先说1双引号与3个双引号的区别,双引号所表示的字符串通常要写成一行如:s1 = "hello,world"如果要写成多行,那么就要使用/ ("连行符")吧,如s ...