考虑原序列中的每一个值作为构成最终答案的那个次大值,那么其所在的合法区间最大时,其对答案的贡献最大。

一个值作为最大值时有两个合法的最大区间,一个是左边第二个比其大的位置和右边第一个比其大的位置构成的区间,另一个是左边第一个比其大的位置和右边第二个比其大的位置构成的区间,这两个区间都是开区间。确定区间可以从小到大排序,用双向链表一个一个删除即可。

然后就将问题简化了,现在要解决给定一个值,求给定区间与其的异或最大值,可以对原序列建可持久化\(Trie\),查询时直接在\(Trie\)上贪心就行。

实现细节看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 3000010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,tot,ans;
int a[maxn],p[maxn],pre[maxn],nxt[maxn];
int rt[maxn],t[maxn][2],cnt[maxn];
bool cmp(const int &x,const int &y)
{
return a[x]<a[y];
}
void insert(int x,int k,int &p)
{
cnt[++tot]=cnt[p],t[tot][0]=t[p][0],t[tot][1]=t[p][1];
p=tot,cnt[p]++;
if(k==-1) return;
insert(x,k-1,t[p][(x>>k)&1]);
}
int query(int ql,int qr,int k,int x)
{
if(k==-1) return 0;
int ch=((x>>k)&1)^1;
if(cnt[t[qr][ch]]-cnt[t[ql][ch]])
return query(t[ql][ch],t[qr][ch],k-1,x)|(1<<k);
else return query(t[ql][ch^1],t[qr][ch^1],k-1,x);
}
int main()
{
read(n);
for(int i=1;i<=n;++i) pre[i]=i-1,nxt[i]=i+1,p[i]=i;
for(int i=1;i<=n;++i)
read(a[i]),rt[i]=rt[i-1],insert(a[i],30,rt[i]);
sort(p+1,p+n+1,cmp);
for(int i=1;i<=n;++i)
{
int l=pre[p[i]],r=nxt[p[i]];
nxt[l]=r,pre[r]=l;
if(l) ans=max(ans,query(rt[pre[l]],rt[r-1],30,a[p[i]]));
if(r!=n+1) ans=max(ans,query(rt[l],rt[nxt[r]-1],30,a[p[i]]));
}
printf("%d\n",ans);
return 0;
}

题解 洛谷 P4098 【[HEOI2013]ALO 】的更多相关文章

  1. 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)

    思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...

  2. P4098 [HEOI2013]ALO

    最近这个家伙去哪了,为啥一直不更博客了呢?原来他被老师逼迫去补了一周的文化课,以至于不会把班里的平均分拉掉太多.好了,我们来看下面这道题目: P4098 [HEOI2013]ALO 题目描述 Welc ...

  3. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  4. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  5. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  6. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  7. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  8. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  9. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

随机推荐

  1. maven依赖冲突以及解决方法

    什么是依赖冲突 依赖冲突是指项目依赖的某一个jar包,有多个不同的版本,因而造成类包版本冲突 依赖冲突的原因 依赖冲突很经常是类包之间的间接依赖引起的.每个显式声明的类包都会依赖于一些其它的隐式类包, ...

  2. caffe的python接口学习(5)生成deploy文件

    如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层, ...

  3. 重学 Java 设计模式:实战备忘录模式「模拟互联网系统上线过程中,配置文件回滚场景」

    作者:小傅哥 博客:https://bugstack.cn - 原创系列专题文章 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 实现不了是研发的借口? 实现不了,有时候是功能复杂度较高难以实 ...

  4. navicat连接vagrant中的数据库

  5. jQurey zTree Demo 3.5

    https://jeesite.gitee.io/front/jquery-ztree/3.5/demo/cn/index.html

  6. 初探pandas——安装和了解pandas数据结构

    安装pandas 通过python pip安装pandas pip install pandas pandas数据结构 pandas常用数据结构包括:Series和DataFrame Series S ...

  7. 支持十万并发的黑科技-NIO

    今天是猿灯塔“365天原创计划”第3天. 今天讲: 支持十万并发的黑科技-NIO 翻译过来就是:Dubbo是阿里巴巴开源的基于 Java 的高性能 RPC(一种远程调用) 分布式服务框架(SOA),致 ...

  8. kubernetes-pod驱逐机制

    1.驱逐策略 kubelet持续监控主机的资源使用情况,并尽量防止计算资源被耗尽.一旦出现资源紧缺的迹象,kubelet就会主动终止部分pod的运行,以回收资源. 2.驱逐信号 以下是一些kubele ...

  9. Prince and princess——需要优化的DP

    一个时间效率为o(nlogn)的算法求公共子序列的应用 Prince and princess 题目大意(已翻译 ) 在nxn的棋盘上,王子和公主玩游戏.棋盘上的正方形编号为1.2.3 ... n * ...

  10. 「疫期集训day13」雾天

    我们千里迢迢赶来这里支援协约国----与德军正面交锋的美国士兵 今天考试签到题都没A,失误重大,T1几周前做过的拓扑排序板子都没写,T2失误在没敢调试,对自己信心不足,30分钟写了个DP,几分钟没调出 ...