考虑原序列中的每一个值作为构成最终答案的那个次大值,那么其所在的合法区间最大时,其对答案的贡献最大。

一个值作为最大值时有两个合法的最大区间,一个是左边第二个比其大的位置和右边第一个比其大的位置构成的区间,另一个是左边第一个比其大的位置和右边第二个比其大的位置构成的区间,这两个区间都是开区间。确定区间可以从小到大排序,用双向链表一个一个删除即可。

然后就将问题简化了,现在要解决给定一个值,求给定区间与其的异或最大值,可以对原序列建可持久化\(Trie\),查询时直接在\(Trie\)上贪心就行。

实现细节看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 3000010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,tot,ans;
int a[maxn],p[maxn],pre[maxn],nxt[maxn];
int rt[maxn],t[maxn][2],cnt[maxn];
bool cmp(const int &x,const int &y)
{
return a[x]<a[y];
}
void insert(int x,int k,int &p)
{
cnt[++tot]=cnt[p],t[tot][0]=t[p][0],t[tot][1]=t[p][1];
p=tot,cnt[p]++;
if(k==-1) return;
insert(x,k-1,t[p][(x>>k)&1]);
}
int query(int ql,int qr,int k,int x)
{
if(k==-1) return 0;
int ch=((x>>k)&1)^1;
if(cnt[t[qr][ch]]-cnt[t[ql][ch]])
return query(t[ql][ch],t[qr][ch],k-1,x)|(1<<k);
else return query(t[ql][ch^1],t[qr][ch^1],k-1,x);
}
int main()
{
read(n);
for(int i=1;i<=n;++i) pre[i]=i-1,nxt[i]=i+1,p[i]=i;
for(int i=1;i<=n;++i)
read(a[i]),rt[i]=rt[i-1],insert(a[i],30,rt[i]);
sort(p+1,p+n+1,cmp);
for(int i=1;i<=n;++i)
{
int l=pre[p[i]],r=nxt[p[i]];
nxt[l]=r,pre[r]=l;
if(l) ans=max(ans,query(rt[pre[l]],rt[r-1],30,a[p[i]]));
if(r!=n+1) ans=max(ans,query(rt[l],rt[nxt[r]-1],30,a[p[i]]));
}
printf("%d\n",ans);
return 0;
}

题解 洛谷 P4098 【[HEOI2013]ALO 】的更多相关文章

  1. 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)

    思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...

  2. P4098 [HEOI2013]ALO

    最近这个家伙去哪了,为啥一直不更博客了呢?原来他被老师逼迫去补了一周的文化课,以至于不会把班里的平均分拉掉太多.好了,我们来看下面这道题目: P4098 [HEOI2013]ALO 题目描述 Welc ...

  3. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  4. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  5. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  6. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  7. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  8. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  9. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

随机推荐

  1. React实战教程之从零开始手把手教你使用 React 最新特性Hooks API 打造一款计算机知识测验App

    项目演示地址 项目演示地址 项目代码结构 前言 React 框架的优雅不言而喻,组件化的编程思想使得React框架开发的项目代码简洁,易懂,但早期 React 类组件的写法略显繁琐.React Hoo ...

  2. Plugns

    Lombok Translation Rainbow Brackets

  3. 彻底搞懂Redis主从复制原理及实战

    欢迎关注公众号:「码农富哥」,致力于分享后端技术 (高并发架构,分布式集群系统,消息队列中间件,网络,微服务,Linux, TCP/IP, HTTP, MySQL, Redis), Python 等 ...

  4. JDK8--07:并行流与串行流

    JDK8中,提供了并行流和串行流,使用parallel()和sequential()来处理,parallel()为并行流sequential()为串行流,两者可以相互转换,以最后一个为准 LongSt ...

  5. 1166 - Unknown error 1166[mysql 错误

    错误码 1166 原因 字段名因为是复制过来的, 末尾存在了一个空格换行

  6. eclipse clone克隆github远程库工程到本地

    项目作者把项目push到github远程库,其他用户可以把项目克隆到本地: eclipse里的操作具体如下: File -> Import... 找到Git 选择 Project from Gi ...

  7. cron表达式详解,cron表达式写法,cron表达式例子

    (cron = "* * * * * *") cron表达式格式:{秒数} {分钟} {小时} {日期} {月份} {星期} {年份(可为空)}例  "0 0 12 ? ...

  8. Ticket Game【博弈】

    题目 Monocarp and Bicarp live in Berland, where every bus ticket consists of n digits (n is an even nu ...

  9. 浅谈bfs

    广搜(bfs) 定义 广度优先算法,简称BFS.是一种图形搜索演算法,简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点,如果发现目标,终止. 与dfs的相似之处与不同 结合深搜理解 相同点:都 ...

  10. 多核CPU硬件架构介绍

    转自:http://book.51cto.com/art/201004/197196.htm SISD.MIMD.SIMD.MISD计算机的体系结构 1. 计算平台介绍 Flynn于1972年提出了计 ...