传送门:https://vjudge.net/problem/HDU-6822

题意:给你一张无限的纸有四种折叠方式,并且在n次折叠后减两刀问最后纸张数量的数学期望。

思路:我们要得到一个通项公式对于不同折叠情况下的最后所得纸张数量,因为从上往下对折和从下往上对折是一样的,同理从左忘右对折和从右往左对折也是一样的那么假设从上往下对折k次那么从左往右对折n-k次,那么横线有2k+1条竖线有2n-k+1条,因为最后是从中心位置横竖减两刀,所以最后的纸片数量就是(2k+1)*(2n-k+1)个。接下来就是对二项式定理的化简了。

 1 //#include<bits/stdc++.h>
2 #include<time.h>
3 #include <set>
4 #include <map>
5 #include <stack>
6 #include <cmath>
7 #include <queue>
8 #include <cstdio>
9 #include <string>
10 #include <vector>
11 #include <cstring>
12 #include <utility>
13 #include <cstring>
14 #include <iostream>
15 #include <algorithm>
16 #include <list>
17 using namespace std;
18 #define eps 1e-10
19 #define PI acos(-1.0)
20 #define lowbit(x) ((x)&(-x))
21 #define zero(x) (((x)>0?(x):-(x))<eps)
22 #define mem(s,n) memset(s,n,sizeof s);
23 #define ios {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);}
24 typedef long long ll;
25 typedef unsigned long long ull;
26 const int maxn=6e6+5;
27 const int Inf=0x7f7f7f7f;
28 const ll Mod=1e9+7;
29 const int N=3e3+5;
30 bool isPowerOfTwo(int n) { return n > 0 && (n & (n - 1)) == 0; }//判断一个数是不是 2 的正整数次幂
31 int modPowerOfTwo(int x, int mod) { return x & (mod - 1); }//对 2 的非负整数次幂取模
32 int getBit(int a, int b) { return (a >> b) & 1; }// 获取 a 的第 b 位,最低位编号为 0
33 int Max(int a, int b) { return b & ((a - b) >> 31) | a & (~(a - b) >> 31); }// 如果 a>=b,(a-b)>>31 为 0,否则为 -1
34 int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31); }
35 ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
36 ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
37 int Abs(int n) {
38 return (n ^ (n >> 31)) - (n >> 31);
39 /* n>>31 取得 n 的符号,若 n 为正数,n>>31 等于 0,若 n 为负数,n>>31 等于 -1
40 若 n 为正数 n^0=n, 数不变,若 n 为负数有 n^(-1)
41 需要计算 n 和 -1 的补码,然后进行异或运算,
42 结果 n 变号并且为 n 的绝对值减 1,再减去 -1 就是绝对值 */
43 }
44 ll binpow(ll a, ll b,ll c) {
45 ll res = 1;
46 while (b > 0) {
47 if (b & 1) res = res * a%c;
48 a = a * a%c;
49 b >>= 1;
50 }
51 return res%c;
52 }
53 void extend_gcd(ll a,ll b,ll &x,ll &y)
54 {
55 if(b==0) {
56 x=1,y=0;
57 return;
58 }
59 extend_gcd(b,a%b,x,y);
60 ll tmp=x;
61 x=y;
62 y=tmp-(a/b)*y;
63 }
64 ll mod_inverse(ll a,ll m)
65 {
66 ll x,y;
67 extend_gcd(a,m,x,y);
68 return (m+x%m)%m;
69 }
70 ll eulor(ll x)
71 {
72 ll cnt=x;
73 ll ma=sqrt(x);
74 for(int i=2;i<=ma;i++)
75 {
76 if(x%i==0) cnt=cnt/i*(i-1);
77 while(x%i==0) x/=i;
78 }
79 if(x>1) cnt=cnt/x*(x-1);
80 return cnt;
81 }
82 int mod=998244353;
83 int main()
84 {
85 ios
86 int T;
87 ll n;
88 cin>>T;
89 while(T--)
90 {
91 cin>>n;
92 ll c2=binpow(2,n,mod);
93 ll c3=binpow(3,n,mod);
94 ll c22=binpow(c2,mod-2,mod);
95 cout<<(1+c2+2*c3*c22)%mod<<endl;
96 }
97 return 0;
98 }

Paperfolding HDU - 6822的更多相关文章

  1. hdu 6822 Paperfolding 规律+排列组合+逆元

    题意: 给你一片纸,你可以对它进行四种操作,分别是向上.向下.向左.向右对折.把对折之后的纸片横向剪开,再纵向剪开(十字架剪开) 问你你能剪出来的纸片的期望个数 题解(参考:https://blog. ...

  2. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  3. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  4. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  5. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  6. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

  7. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  8. hdu 4481 Time travel(高斯求期望)(转)

    (转)http://blog.csdn.net/u013081425/article/details/39240021 http://acm.hdu.edu.cn/showproblem.php?pi ...

  9. HDU 3791二叉搜索树解题(解题报告)

    1.题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=3791 2.参考解题 http://blog.csdn.net/u013447865/articl ...

随机推荐

  1. 全局ID生成--雪花算法

    分布式ID常见生成策略: 分布式ID生成策略常见的有如下几种: 数据库自增ID. UUID生成. Redis的原子自增方式. 数据库水平拆分,设置初始值和相同的自增步长. 批量申请自增ID. 雪花算法 ...

  2. Docker--Image and Container

    2.1 深入探讨Image  说白了,image就是由一层一层的layer组成的. 2.1.1 官方image https://github.com/docker-library mysql http ...

  3. 可重入锁ReentrantLock解析

    说到可重入锁,先从AQS的ConditionObject说起,AQS的内部类ConditionObject是构建显示锁条件队列的基础.之前AQS的解析没有说这个内部类,这里和ReentrantLock ...

  4. npm clear folder

    npm clear folder rm -rf rimraf rmrf & clear build / dist folder caches https://www.npmjs.com/pac ...

  5. PostgreSQL All In One

    PostgreSQL All In One SQL macOS https://www.postgresql.org/download/macosx/ EDB installer PostgreSQL ...

  6. Async Programming All in One

    Async Programming All in One Async & Await Frontend (async () => { const url = "https:// ...

  7. BPMN 2.0

    BPMN 2.0 Business Process Model and Notation 业务流程模型和符号 https://www.omg.org/spec/BPMN/2.0.2/ bpmn-js ...

  8. 抓手 & 技术管理

    抓手 & 技术管理 https://zhuanlan.zhihu.com/p/28891618 技术管理的目的 管理就是通过别人拿到结果.而管理的两个着眼点就是:成事.育人. 把事情搞定,把人 ...

  9. ForkJoin、并行流计算、串行流计算对比

    ForkJoin 什么是 ForkJoin ForkJoin 是一个把大任务拆分为多个小任务来分别计算的并行计算框架 ForkJoin 特点:工作窃取 这里面维护的都是双端队列,因此但其中一个线程完成 ...

  10. [转]什么是 C 和 C ++ 标准库?

    转载地址:https://www.cnblogs.com/findumars/p/9000371.html 简要介绍编写C/C ++应用程序的领域,标准库的作用以及它是如何在各种操作系统中实现的.我已 ...