bzoj2561最小生成树

题意:

给定一个连通无向图,假设现在加入一条边权为L的边(u,v),求需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上。

题解:

最小割。如果一个边出现在最小生成树上,那么权值比它小的边一定不能使图联通。因为要求删掉最少,所以当加入这条边后整个图刚好联通。因此可以将这条边的一个端点作为源,另一端点作为汇,插入所以权值比L小的边,每条边流量为1,跑最小割,求出来的答案就是使源、汇不联通最少删掉边。最大生成树同理,插入的是权值比L大的。最后答案是两次跑最小割的结果相加。反思:注意边要开到4倍,而且图中边是无向边,在网络流插边时要插两个方向。这道题也告诉我们实际上数据范围上万的可能也是用网络流。dinic/ISAP的玄学复杂度QAQ

代码:

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#define maxn 30000
#define inc(i,j,k) for(int i=j;i<=k;i++)
#define INF 0x3fffffff
using namespace std; struct e{int t,c,n;}; e es[maxn*]; int g[maxn],ess;
inline void pe(int f,int t,int c){
es[++ess]=(e){t,c,g[f]}; g[f]=ess; es[++ess]=(e){f,,g[t]}; g[t]=ess;
}
inline void init(){
ess=-; memset(g,-,sizeof(g));
}
queue <int> q; int h[maxn];
bool bfs(int s,int t){
memset(h,-,sizeof(h)); while(!q.empty())q.pop(); h[s]=; q.push(s);
while(! q.empty()){
int x=q.front(); q.pop();
for(int i=g[x];i!=-;i=es[i].n)if(es[i].c&&h[es[i].t]==-)h[es[i].t]=h[x]+,q.push(es[i].t);
}
return h[t]!=-;
}
int dfs(int x,int t,int f){
if(x==t)return f; int u=;
for(int i=g[x];i!=-;i=es[i].n)if(es[i].c&&h[es[i].t]==h[x]+){
int w=dfs(es[i].t,t,min(f,es[i].c)); f-=w; u+=w; es[i].c-=w; es[i^].c+=w; if(f==)return u;
}
if(u==)h[x]=-; return u;
}
int dinic(int s,int t){
int f=; while(bfs(s,t))f+=dfs(s,t,INF); return f;
}
int n,m,u[maxn*],v[maxn*],w[maxn*],U,V,L;
int main(){
scanf("%d%d",&n,&m); inc(i,,m)scanf("%d%d%d",&u[i],&v[i],&w[i]); scanf("%d%d%d",&U,&V,&L); int ans=;
init(); inc(i,,m)if(w[i]<L)pe(u[i],v[i],),pe(v[i],u[i],); ans+=dinic(U,V);
init(); inc(i,,m)if(w[i]>L)pe(u[i],v[i],),pe(v[i],u[i],); ans+=dinic(U,V);
printf("%d",ans); return ;
}

20160523

bzoj2561最小生成树的更多相关文章

  1. BZOJ2561 最小生成树(最小割)

    考虑kruskal的过程:按边权从小到大考虑,如果这条边的两端点当前不连通则将其加入最小生成树.由此可以发现,某条边可以在最小生成树上的充要条件是其两端点无法通过边权均小于它的边连接. 那么现在我们需 ...

  2. [bzoj2561]最小生成树_网络流_最小割_最小生成树

    最小生成树 bzoj-2561 题目大意:题目链接. 注释:略. 想法: 我们发现: 如果一条权值为$L$的边想加入到最小生成树上的话,需要满足一下条件. 就是求出原图的最小生成树之后,这个边当做非树 ...

  3. bzoj2561: 最小生成树

    如果出现在最小生成树上,那么此时比该边权值小的边无法连通uv.据此跑最小割(最大流)即可. #include<cstdio> #include<cstring> #includ ...

  4. BZOJ2561最小生成树——最小割

    题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...

  5. bzoj千题计划322:bzoj2561: 最小生成树(最小割)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...

  6. BZOJ2561 最小生成树 【最小割】

    题目 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多 ...

  7. 【BZOJ2561】最小生成树 最小割

    [BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...

  8. 【bzoj2561】最小生成树 网络流最小割

    题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...

  9. 【bzoj2561】最小生成树

    嗯……这题是一个网络流. 加入的边为u,v长度L 则所有长度大于L的边不能使得u,v连通 求个最小割即可.小于同理 两次最小割结果相加. #include<bits/stdc++.h> # ...

随机推荐

  1. spark源码解析总结

    ========== Spark 通信架构 ========== 1.spark 一开始使用 akka 作为网络通信框架,spark 2.X 版本以后完全抛弃 akka,而使用 netty 作为新的网 ...

  2. 浅淡i.MX8M Mini处理器的效能以及平台对比

    i.MX 8M Mini是恩智浦首款嵌入式多核应用处理器,定位在任何通用工业和物联网的应用,是一款针对边缘计算应用的芯片,也是恩智普i.MX系列中第一个加了机器学习核的产品线.这颗芯片采用先进的14L ...

  3. Python进阶——详解元类,metaclass的原理和用法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Python专题第18篇文章,我们来继续聊聊Python当中的元类. 在上上篇文章当中我们介绍了type元类的用法,在上一篇文章当中我 ...

  4. k8s的两种网络方案与多种工作模式[flannel与calico]

    k8s的两种网络方案与多种工作模式 1. Flannel: flannel有三种工作模式: 1. vxlan(隧道方案) 2. host-gw(路由方案) 2. udp(在用户态实现的数据封装解封装, ...

  5. springboot mybatis plus多数据源轻松搞定 (上)

    在开发中经常会遇到一个程序需要调用多个数据库的情况,总得来说分为下面的几种情况: 一个程序会调用不同结构的两个数据库. 读写分离,两个数据结构可能一样高,但是不同的操作针对不同的数据库. 混合情况,既 ...

  6. 阿里云Ubuntu配置mysql+navicat连接

    一>mysql安装配置(工具:Xshell6) ​ 1.安装mysql apt-get install mysql-server mysql-client ​ 2.查看安装:查看版本 sudo ...

  7. tarjan算法求scc & 缩点

    前置知识 图的遍历(dfs) 强连通&强连通分量 对于有向图G中的任意两个顶点u和v存在u->v的一条路径,同时也存在v->u的路径,我们则称这两个顶点强连通.以此类推,强连通分量 ...

  8. 搜索引擎ElasticSearch入门

    前言 最近项目上需要用到搜索引擎,由于之前自己没有了解过,所以整理了一下搜索引擎的相关概念知识. 正文 想查数据就免不了搜索,搜索就离不开搜索引擎,百度.谷歌都是一个非常庞大复杂的搜索引擎,他们几乎索 ...

  9. laravel生成key失败

    laravel生成key失败 生成KEY失败.原因是没有复制.env文件 In KeyGenerateCommand.php line 96: file_get_contents(D:\project ...

  10. 微信小程序点击保存图片到本地相册——踩坑

    在微信小程序中要保存图片到本地相册,需要获取相册权限. 总之整个功能实现下来需要如下几个小程序的API:wx.getSetting,wx.authorize,wx.openSetting,wx.dow ...