• 题意:RT,给你四个数\(a,b,c,d\),求\(x+y+z=k\)的方案数.

  • 题解:我们可以先枚举\(x\)的值,然后\(x+y\)能取到的范围一定是\([x,x+b]\),也就是说这个区间内每个数都有一个贡献,所以我们可以通过枚举\(a\)并且利用差分来求出\(x+y\)的贡献,然后再复原前缀和,同理再枚举\(x+y\),即枚举\(a+b\)并加上\(c\),来求出\(x+y+z\)的贡献,再复原前缀和,最后枚举\(d\)将每个点的方案数加给答案即可.

  • 代码:

    ll a,b,c,d;
    ll dif[N],difc[N]; int main() {
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    cin>>a>>b>>c>>d; for(int i=0;i<=a;++i){
    dif[i]++;
    dif[i+b+1]--;
    } for(int i=1;i<=a+b;++i) dif[i]+=dif[i-1]; for(int i=0;i<=a+b;++i){
    difc[i]+=dif[i];
    difc[i+c+1]-=dif[i];
    }
    for(int i=1;i<=a+b+c;++i) difc[i]+=difc[i-1];
    ll ans=0;
    for(int i=0;i<=d;++i) ans+=difc[i]; cout<<ans<<endl; return 0;
    }

第 45 届国际大学生程序设计竞赛(ICPC)亚洲网上区域赛模拟赛. A.Easy Equation (前缀和/差分)的更多相关文章

  1. 第 45 届国际大学生程序设计竞赛(ICPC)亚洲区域赛(济南)-L Bit Sequence

    题意 给你两个数l,m,大小为m的数组a,求[0,l]之间满足以下条件的数x的个数: 对于任何i输入[0,m-1],f(x+i)%2=a[i]:f(k):代表k在二进制下1的个数 m的范围<=1 ...

  2. 《ACM国际大学生程序设计竞赛题解Ⅰ》——基础编程题

    这个专栏开始介绍一些<ACM国际大学生程序设计竞赛题解>上的竞赛题目,读者可以配合zju/poj/uva的在线测评系统提交代码(今天zoj貌似崩了). 其实看书名也能看出来这本书的思路,就 ...

  3. 2018 ACM 国际大学生程序设计竞赛上海大都会部分题解

    题目链接 2018 ACM 国际大学生程序设计竞赛上海大都会 下午午休起床被同学叫去打比赛233 然后已经过了2.5h了 先挑过得多的做了 .... A题 rand x*n 次点,每次judge一个点 ...

  4. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 F Color it

    链接:https://www.nowcoder.com/acm/contest/163/F 来源:牛客网 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 F Color it 时间限制:C ...

  5. ZZUOJ-1195-OS Job Scheduling(郑州大学第七届ACM大学生程序设计竞赛E题)

    1195: OS Job Scheduling Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 106  Solved: 35 [id=1195&quo ...

  6. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 F Color it (扫描线)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 F Color it (扫描线) 链接:https://ac.nowcoder.com/acm/contest/163/F来源:牛客网 时间 ...

  7. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

  8. 2018 ACM 国际大学生程序设计竞赛上海大都会赛

    传送门:2018 ACM 国际大学生程序设计竞赛上海大都会赛 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛2018-08-05 12:00:00 至 2018-08-05 17:00:0 ...

  9. 第 46 届 ICPC 国际大学生程序设计竞赛亚洲区域赛(沈阳)

    有时候,很简单的模板题,可能有人没有做出来,(特指 I ),到时候一定要把所有的题目全部看一遍 目录 B 题解 E F 题解 H I 题解&代码 J B 输入样例 3 2 1 2 1 2 3 ...

随机推荐

  1. 基于Python的接口自动化-读写excel文件

    引言 使用python进行接口测试时常常需要接口用例测试数据.断言接口功能.验证接口响应状态等,如果大量的接口测试用例脚本都将接口测试用例数据写在脚本文件中,这样写出来整个接口测试用例脚本代码将看起来 ...

  2. 关于maven多module的依赖问题

    之前的项目因为历史的原因,都是一个project里只包含了一个module,今年进入了新的项目组,出现了多个module,最近刚好也是在学<maven实战>因此想要将这个东西记录下来 工程 ...

  3. linux硬盘分区和fdisk命令

    分区的几个概念 硬盘分区有三种,主分区.扩展分区.逻辑分区.一个硬盘主分区至少有1个,最多4个,扩展分区可以没有,最多1个.且主分区+扩展分区总共不能超过4个.逻辑分区可以有若干个.在windows下 ...

  4. 【Oracle】substr()函数详解

    Oracle的substr函数简单用法 substr(字符串,截取开始位置,截取长度) //返回截取的字 substr('Hello World',0,1) //返回结果为 'H'  *从字符串第一个 ...

  5. Nacos集成学习入门

    微服务注册中心nacos学习:先尝试使用它,然后撸它源码搞懂它. 在这里整理一下自己之前集成nacos的内容. 我的github地址:https://github.com/mrxiaobai-wen/ ...

  6. SQL -去重Group by 和Distinct的效率

    经实际测试,同等条件下,5千万条数据,Distinct比Group by效率高,但是,这是有条件的,这五千万条数据中不重复的仅仅有三十多万条,这意味着,五千万条中基本都是重复数据. 为了验证,重复数据 ...

  7. Spring依赖注入的方式、类型、Bean的作用域、自动注入、在Spring配置文件中引入属性文件

    1.Spring依赖注入的方式 通过set方法完成依赖注入 通过构造方法完成依赖注入 2.依赖注入的类型 基本数据类型和字符串 使用value属性 如果是指向另一个对象的引入 使用ref属性 User ...

  8. java.net.NoRouteToHostException: 没有到主机的路由

    今天在配置Jenkins 的云服务器的时候提示:java.net.NoRouteToHostException: 没有到主机的路由,网上查到的没有主机路由问题提到的大多是防火墙问题. 查看防火墙状态: ...

  9. Py变量,递归,作用域,匿名函数

    局部变量与全局变量 全局变量:全局生效的变量,在顶头的,无缩进的定义的变量. 局部变量:函数内生效的变量,在函数内定义的变量. name='1fh' def changename(): name='s ...

  10. 我为什么不鼓吹 WireGuard

    原文链接:https://fuckcloudnative.io/posts/why-not-wireguard/ 最近有一款新型 VPN 工具备受瞩目,相信很多人已经听说过了,没错就是 WireGua ...