KM 算法

可能需要先去学学匈牙利算法等二分图相关知识。


模板题-洛谷P6577 【模板】二分图最大权完美匹配

给 \(n\) 和 \(m\) 与边 \(u_i,v_i,w_i(1\le i\le m)\)。有一个二分图,两边各 \(n\) 个点,共 \(m\) 条边,保证有完美匹配,求完美匹配最大边权之和。

数据范围:\(1\le n\le 500\),\(1\le m\le \frac{n\times (n-1)}{2}\),\(-19980731\le w_i \le 19980731\),无重边。


卡网络流以及一切复杂度 \(> \Theta(n^3)\) 的算法,卡不掉怪良心出题人。


  • 奇奇怪怪的定义

顶标:两边点都有的标记(左 \(a_i\) 右 \(b_j\))满足 \(a_i+b_j\ge w_{i,j}\),不唯一。

相等边:\(a_i+b_j=w_{i,j}\) 的边 \((i,j)\)。

相等子图:相等边构成的子图。

交错树:增广路径形成的树。

\(\tt KM\) 算法的结论:\(\color{#f00}{\texttt{当每个相等子图完备匹配时,二分图得到最大匹配。}}\)

因为显然,因为这个时候不可能有比它更优的匹配。


  • 奇奇怪怪的算法

很明显,并不是所有 的顶标分配方案都能使“每个相等子图完备匹配”的。

但是,找到一个可行的 顶标分配方案是很简单的,所以可以找到一种顶标分配然后找增广路的同时调整。

然后在发现相等子图的完备匹配后就匹配。

具体流程:

\((1)\) 分配可行顶标,并对每个节点执行 \((2),(3),(4)\)。

\((2)\) 匈牙利算法找增广。

\((3)\) 找不到增广路(相等子图匹配)就调整顶标。

\((4)\) 重复 \((2),(3)\) 直到找到增广路。


  • 代码

分析一下代码可知实际时间复杂度 \(\Theta(n^4)\)。

//Data
const ll N=500;
ll n,m,e[N+7][N+7]; //KM
ll mat[N+7],d[N+7],va[N+7],vb[N+7],ak[N+7],bk[N+7];
ll Dfs(ll u){
va[u]=1;
for(ll v=1;v<=n;v++)if(!vb[v]){
if(ak[u]+bk[v]-e[u][v]==0){
vb[v]=1;
if(!mat[v]||Dfs(mat[v])) return mat[v]=u,1;
} else d[v]=min(d[v],ak[u]+bk[v]-e[u][v]);
}
return 0;
}
ll KM(){
fill(ak+1,ak+n+1,-INF);
for(ll u=1;u<=n;u++)
for(ll v=1;v<=n;v++) ak[u]=max(ak[u],e[u][v]);
for(ll u=1;u<=n;u++){
while(true){
fill(va+1,va+n+1,0);
fill(vb+1,vb+n+1,0);
fill(d+1,d+n+1,INF);
if(Dfs(u)) break;
ll c=INF;
for(ll v=1;v<=n;v++)if(!vb[v]) c=min(c,d[v]);
for(ll v=1;v<=n;v++)if(va[v]) ak[v]-=c;
for(ll v=1;v<=n;v++)if(vb[v]) bk[v]+=c;
}
}
ll res=0;
for(ll v=1;v<=n;v++) res+=e[mat[v]][v];
return res;
} //Main
int main(){
scanf("%lld%lld",&n,&m);
for(ll u=1;u<=n;u++)
for(ll v=1;v<=n;v++) e[u][v]=-INF;
for(ll i=1;i<=m;i++){
ll u,v,w;
scanf("%lld%lld%lld",&u,&v,&w);
e[u][v]=max(e[u][v],w);
}
printf("%lld\n",KM());
for(ll u=1;u<=n;u++) printf("%lld ",mat[u]);puts("");
return 0;
}

这时候可以得 \(50\) 分,剩余的 \(\tt TLE\)。

废话:不得不佩服出题人!大部分人的 \(\tt KM\) 算法都是上面这么写的,要知道还有 \(\Theta(n^3)\) 的 \(\tt KM\),得找遍全网吧!我找了一个下午终于找到了,希望写了这篇文章后,大家就不需要像我这么累了!


  • 奇奇怪怪的优化

就是把 \(\tt Dfs\) 换成 \(\tt Bfs\)。本质和上面代码是一样的。

每个左边的点只会进队、搜索一次。\(\tt p\) 数组记录的是增广交错树。

这个 \(\tt Bfs\) 是迭代写的,所以不需要 \(\tt queue\)。


  • 代码

随机数据下是 \(\Theta(n^3)\),听说可以卡成 \(\Theta(n^4)\)。但是这样卡貌似没意义。

//Data
const int N=500;
int n,m,e[N+7][N+7]; //KM
int mb[N+7],vb[N+7],ka[N+7],kb[N+7],p[N+7],c[N+7];
int qf,qb,q[N+7];
void Bfs(int u){
int a,v=0,vl=0,d;
for(int i=1;i<=n;i++) p[i]=0,c[i]=inf;
mb[v]=u;
do {
a=mb[v],d=inf,vb[v]=1;
for(int b=1;b<=n;b++)if(!vb[b]){
if(c[b]>ka[a]+kb[b]-e[a][b])
c[b]=ka[a]+kb[b]-e[a][b],p[b]=v;
if(c[b]<d) d=c[b],vl=b;
}
for(int b=0;b<=n;b++)
if(vb[b]) ka[mb[b]]-=d,kb[b]+=d;
else c[b]-=d;
v=vl;
} while(mb[v]);
while(v) mb[v]=mb[p[v]],v=p[v];
}
ll KM(){
for(int i=1;i<=n;i++) mb[i]=ka[i]=kb[i]=0;
for(int a=1;a<=n;a++){
for(int b=1;b<=n;b++) vb[b]=0;
Bfs(a);
}
ll res=0;
for(int b=1;b<=n;b++) res+=e[mb[b]][b];
return res;
} //Main
int main(){
n=ri,m=ri;
for(int a=1;a<=n;a++)
for(int b=1;b<=n;b++) e[a][b]=-inf;
for(int i=1;i<=m;i++){
int u=ri,v=ri,w=ri;
e[u][v]=max(e[u][v],w);
}
printf("%lld\n",KM());
for(int u=1;u<=n;u++) printf("%d ",mb[u]);puts("");
return 0;
}

是不是看起来特别玄学?\(\tt KM\) 这种偏僻又难懂的算法,或许还是背板子好。

对了,然后就能 \(\tt AC\) 了。


祝大家学习愉快!

KM 算法的更多相关文章

  1. 匈牙利算法与KM算法

    匈牙利算法 var i,j,k,l,n,m,v,mm,ans:longint; a:..,..]of longint; p,f:..]of longint; function xyl(x,y:long ...

  2. 【HDU2255】奔小康赚大钱-KM算法

    Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...

  3. HDU2255-奔小康赚大钱-二分图最大权值匹配-KM算法

    二分图最大权值匹配问题.用KM算法. 最小权值的时候把权值设置成相反数 /*-------------------------------------------------------------- ...

  4. KM算法及其优化的学习笔记&&bzoj2539: [Ctsc2000]丘比特的烦恼

    感谢  http://www.cnblogs.com/vongang/archive/2012/04/28/2475731.html 这篇blog里提供了3个链接……基本上很明白地把KM算法是啥讲清楚 ...

  5. poj 2195 KM算法

    题目链接:http://poj.org/problem?id=2195 KM算法模板~ 代码如下: #include "stdio.h" #include "string ...

  6. hdu 2255 奔小康赚大钱--KM算法模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 题意:有N个人跟N个房子,每个人跟房子都有一定的距离,现在要让这N个人全部回到N个房子里面去,要 ...

  7. HDU(2255),KM算法,最大权匹配

    题目链接 奔小康赚大钱 Time Limit: 1000/1000MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  8. 二分图 最大权匹配 km算法

    这个算法的本质还是不断的找增广路: KM算法的正确性基于以下定理:若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最 ...

  9. hdu 2255 奔小康赚大钱 KM算法

    看到这么奇葩的题目名我笑了,后来这么一个裸的KM调了2小时我哭了…… 这是个裸的KM算法,也没什么多说的,主要是注意多组数据时,每次都要把各种数组清空啊,赋值啊什么的,反正比较麻烦.至于为什么调了2小 ...

  10. hdu 2853 Assignment KM算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2853 Last year a terrible earthquake attacked Sichuan ...

随机推荐

  1. 一:JavaWeb

    1.javaWeb技术体系 2.HTMl 超文本标记语言 (超文本的意思就是除了可以包含文字之外,还可以包含图片链接音乐视频等...) 2.1 HTML网页的组成  (结构:HTML 表现:CSS 行 ...

  2. RestPack Java实现Html转PDF文件

    最近公司需要将前端一个图表统计导出为pdf.前端导出显示的pdf还是可以的,但是将会导致页面不可用与卡死状态.所以由后端寻找解决方案. 以下为解决方案调研 https://www.cnblogs.co ...

  3. JS控制Video播放器(快进、后退、播放、暂停、音量大小)

    思路: 一.首先监听触发事件. 比如:向上键对应的keyCode为38,向下键对应的keyCode为40,向左键对应的keyCode为37,向右键对应的keyCode为39,空格键对应的keyCode ...

  4. C# 9 record 并非简单属性 POCO 的语法糖

    C# 9 record 并非简单属性 POCO 的语法糖 最近升级专案到大统一 .NET 5 并使用 C#9 语法尝试改写套件,发现之前以为 record 只是简单属性 POCO 的简化语法糖的认知是 ...

  5. 硕思logo设计师注册码去哪里找

    硕思logo设计师注册码去哪里找呢?当然是硕思logo设计师官网啦! 最近小编总是会被网友们咨询关于logo设计的问题,其中很多网友并不是专业的设计人员,特别是一些设计公司面对新手设计时,往往会不知所 ...

  6. 详讲FL Studio通道设置菜单

    我们在FL Studio"通道设置按钮"上右击鼠标就会弹出一个设置菜单,它包含了通道操作的各种常用命令.下文小编将会为大家详细讲解这些命令的具体作用,一起来学习吧! 1.首先,我们 ...

  7. FL studio系列教程(十八):FL Studio输出监视面板讲解

    在FL Studio编曲制作软件中输出监视器面板主要的功能是监视输出电平和波形以及频谱.下面大家就跟小编一起来认识下什么是FL Studio监视面板以及它的一些特征吧! 1.首先,我们来看一下输出监视 ...

  8. 地图上显示点在点上标注当前点的id

    HTML: <div class="form-group field-company-state"> <div style="width:1000px; ...

  9. 接上一篇:(四) 控制反转(IOC)/ 依赖注入(DI)

    spring 核心功能:beans.core.context.expression Spring设计理念 Spring是面向Bean的编程 Spring三个核心组件(Core.Context.Bean ...

  10. LeetCode周赛#204 题解

    1566. 重复至少 K 次且长度为 M 的模式 #模拟 题目链接 题意 给定正整数数组 arr,请你找出一个长度为 m 且在数组中至少重复 k 次的模式. 模式 是由一个或多个值组成的子数组(连续的 ...