Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(一)
在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能。本文通过一个简单的例子详解这两个函数的作用。虽然QuerySet的文档中已经详细说明了,但本文试图从QuerySet触发的SQL语句来分析工作方式,从而进一步了解Django具体的运作方式。
本来打算写成一篇单独的文章的,但是写完select_related()之后发现长度已经有点长了,所以还是写成系列,大概在两到三篇。整个完成之后将会在这里添加上其他文章的链接。
1. 实例的背景说明
假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:

Models.py 内容如下:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
from django.db import modelsclass Province(models.Model): name = models.CharField(max_length=10) def __unicode__(self): return self.nameclass City(models.Model): name = models.CharField(max_length=5) province = models.ForeignKey(Province) def __unicode__(self): return self.nameclass Person(models.Model): firstname = models.CharField(max_length=10) lastname = models.CharField(max_length=10) visitation = models.ManyToManyField(City, related_name = "visitor") hometown = models.ForeignKey(City, related_name = "birth") living = models.ForeignKey(City, related_name = "citizen") def __unicode__(self): return self.firstname + self.lastname |
注1:创建的app名为“QSOptimize”
注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市
2. select_related()
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化
作用和方法
在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。以上例说明,如果我们需要打印数据库中的所有市及其所属省份,最直接的做法是:
|
1
2
3
4
|
>>> citys = City.objects.all()>>> for c in citys:... print c.province... |
这样会导致线性的SQL查询,如果对象数量n太多,每个对象中有k个外键字段的话,就会导致n*k+1次SQL查询。在本例中,因为有3个city对象就导致了4次SQL查询:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`FROM `QSOptimize_city`SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province`WHERE `QSOptimize_province`.`id` = 1 ;SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province`WHERE `QSOptimize_province`.`id` = 2 ;SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province`WHERE `QSOptimize_province`.`id` = 1 ; |
注:这里的SQL语句是直接从Django的logger:‘django.db.backends’输出出来的
如果我们使用select_related()函数:
|
1
2
3
4
|
>>> citys = City.objects.select_related().all()>>> for c in citys:... print c.province... |
就只有一次SQL查询,显然大大减少了SQL查询的次数:
|
1
2
3
4
|
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM`QSOptimize_city` INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) ; |
这里我们可以看到,Django使用了INNER JOIN来获得省份的信息。顺便一提这条SQL查询得到的结果如下:
|
1
2
3
4
5
6
7
8
|
+----+-----------+-------------+----+-----------+| id | name | province_id | id | name |+----+-----------+-------------+----+-----------+| 1 | 武汉市 | 1 | 1 | 湖北省 || 2 | 广州市 | 2 | 2 | 广东省 || 3 | 十堰市 | 1 | 1 | 湖北省 |+----+-----------+-------------+----+-----------+3 rows in set (0.00 sec) |
使用方法
*fields 参数
select_related() 接受可变长参数,每个参数是需要获取的外键(父表的内容)的字段名,以及外键的外键的字段名、外键的外键的外键…。若要选择外键的外键需要使用两个下划线“__”来连接。
例如我们要获得张三的现居省份,可以用如下方式:
|
1
2
|
>>> zhangs = Person.objects.select_related('living__province').get(firstname=u"张",lastname=u"三")>>> zhangs.living.province |
触发的SQL查询如下:
|
1
2
3
4
5
6
7
8
|
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_person` INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`living_id` = `QSOptimize_city`.`id`) INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '张' ); |
可以看到,Django使用了2次 INNER JOIN 来完成请求,获得了city表和province表的内容并添加到结果表的相应列,这样在调用 zhangs.living的时候也不必再次进行SQL查询。
|
1
2
3
4
5
6
|
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+| id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name |+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+| 1 | 张 | 三 | 3 | 1 | 1 | 武汉市 | 1 | 1 | 湖北省 |+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+1 row in set (0.00 sec) |
然而,未指定的外键则不会被添加到结果中。这时候如果需要获取张三的故乡就会进行SQL查询了:
|
1
|
>>> zhangs.hometown.province |
|
1
2
3
4
5
6
7
8
|
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` WHERE `QSOptimize_city`.`id` = 3 ;SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` = 1 |
同时,如果不指定外键,就会进行两次查询。如果深度更深,查询的次数更多。
值得一提的是,从Django 1.7开始,select_related()函数的作用方式改变了。在本例中,如果要同时获得张三的故乡和现居地的省份,在1.7以前你只能这样做:
|
1
2
3
|
>>> zhangs = Person.objects.select_related('hometown__province','living__province').get(firstname=u"张",lastname=u"三")>>> zhangs.hometown.province>>> zhangs.living.province |
但是1.7及以上版本,你可以像和queryset的其他函数一样进行链式操作:
|
1
2
3
|
>>> zhangs = Person.objects.select_related('hometown__province').select_related('living__province').get(firstname=u"张",lastname=u"三")>>> zhangs.hometown.province>>> zhangs.living.province |
如果你在1.7以下版本这样做了,你只会获得最后一个操作的结果,在本例中就是只有现居地而没有故乡。在你打印故乡省份的时候就会造成两次SQL查询。
depth 参数
select_related() 接受depth参数,depth参数可以确定select_related的深度。Django会递归遍历指定深度内的所有的OneToOneField和ForeignKey。以本例说明:
|
1
|
>>> zhangs = Person.objects.select_related(depth = d) |
d=1 相当于 select_related(‘hometown’,'living’)
d=2 相当于 select_related(‘hometown__province’,'living__province’)
无参数
select_related() 也可以不加参数,这样表示要求Django尽可能深的select_related。例如:zhangs = Person.objects.select_related().get(firstname=u”张”,lastname=u”三”)。但要注意两点:
- Django本身内置一个上限,对于特别复杂的表关系,Django可能在你不知道的某处跳出递归,从而与你想的做法不一样。具体限制是怎么工作的我表示不清楚。
- Django并不知道你实际要用的字段有哪些,所以会把所有的字段都抓进来,从而会造成不必要的浪费而影响性能。
小结
- select_related主要针一对一和多对一关系进行优化。
- select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
- 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
- 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
- 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
- Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。
Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(一)的更多相关文章
- 这个贴子的内容值得好好学习--实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化
感觉要DJANGO用得好,ORM必须要学好,不管理是内置的,还是第三方的ORM. 最最后还是要到SQL.....:( 这一关,慢慢练啦.. 实例详解Django的 select_related 和 p ...
- Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(三)
4.一些实例 如果我们想要获得所有家乡是湖北的人,最无脑的做法是先获得湖北省,再获得湖北的所有城市,最后获得故乡是这个城市的人.就像这样: 1 2 3 4 5 >>> hb = Pr ...
- Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(二)
3. prefetch_related() 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化.或许你会说,没有一个叫OneToMan ...
- 转载 :实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(一)
在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子详解这两个函数的作用.虽然Q ...
- 实例具体解释Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(二)
这是本系列的第二篇,内容是 prefetch_related() 函数的用途.实现途径.以及用法. 本系列的第一篇在这里 第三篇在这里 3. prefetch_related() 对于多对多字段(Ma ...
- 详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化
在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子详解这两个函数的作用. 1. ...
- Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化
引言 在数据库存在外键的其情况下,使用select_related()和prefetch_related()很大程度上减少对数据库的请求次数以提高性能 1.实例准备 模型: from django.d ...
- 转 实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(三)
这是本系列的最后一篇,主要是select_related() 和 prefetch_related() 的最佳实践. 第一篇在这里 讲例子和select_related() 第二篇在这里 讲prefe ...
- 转 实例具体解释DJANGO的 SELECT_RELATED 和 PREFETCH_RELATED 函数对 QUERYSET 查询的优化(二)
https://blog.csdn.net/cugbabybear/article/details/38342793 这是本系列的第二篇,内容是 prefetch_related() 函数的用途.实现 ...
随机推荐
- 【好程序员笔记分享】——UIView与CALayer详解
-iOS培训,iOS学习-------型技术博客.期待与您交流!------------ UIView与CALayer详解 研究Core Animation已经有段时间了,关于Core Animati ...
- 主题模型-LDA浅析
(一)LDA作用 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似 ...
- Cmake ,Out of Source Build
Out of Source build呢,就是让Cmake产生的临时垃圾文件,不关乎于项目实际本身的文件放到一个目录里,一般我们把这个目录放在项目根目录(也可以认为是根CmakeLists.txt)下 ...
- 一个session已经ACTIVE20多小时,等待事件SQL*Net more data from client
问题描述: 一个session已经ACTIVE20多小时,等待事件SQL*Net more data from client 有一人session,从昨天上午11点多登陆(v$session.logi ...
- 【转】打包AAC码流到FLV文件
AAC编码后数据打包到FLV很简单.1. FLV音频Tag格式 字节位置 意义0x08, ...
- html5 750 REM JS换算方法
在安卓手机低版本浏览器,如果进页面快速执行的话会出现计算宽度不正确的情况,解决方法是放在onload方法里面执行,但这种解决方式在一些高版本浏览器中会出现页面闪动,所以使用判断浏览器版本的方式来解决, ...
- MyBatis配置解析
MyBatis配置文件解析(概要) 1.configuration:根元素 1.1 properties:定义配置外在化 1.2 settings:一些全局性的配置 1.3 typeAliases:为 ...
- NetAnalyzer笔记 之 七 NetAnalyzer2016使用方法(1)
[创建时间:2016-04-17 14:47:00] NetAnalyzer下载地址 距离新本的NetAnalyzer已经发布一段时间了,因为比较忙期间只出了一个视频教程,一直没有来的急写文档,今天就 ...
- hdu 4756 Install Air Conditioning
非正规做法,一个一个的暴,减一下枝,还得采用sort,qsort居然过不了…… #include <cstdio> #include <cmath> #include < ...
- 【技术文档】《算法设计与分析导论》R.C.T.Lee等·第7章 动态规划
由于种种原因(看这一章间隔的时间太长,弄不清动态规划.分治.递归是什么关系),导致这章内容看了三遍才基本看懂动态规划是什么.动态规划适合解决可分阶段的组合优化问题,但它又不同于贪心算法,动态规划所解决 ...