win32线程池代码(WinApi/C++)

健壮, 高效,易用,易于扩, 可用于任何C++编译器 
//说明, 这段代码我用了很久, 我删除了自动调整规模的代码(因为他还不成熟)
/******************************************************************
*  Thread Pool For Win32 
*  VC++ 6, BC++ 5.5(Free), GCC(Free)
*  Update : 2004.6.9 llBird  wushaojian@21cn.com

Use:
1):
void threadfunc(void *p)
{
 //...
}
 ThreadPool tp;
 for(i=0; i<100; i++)
  tp.Call(threadfunc);

ThreadPool tp(20);//20为初始线程池规模
 tp.Call(threadfunc, lpPara);
 tp.AdjustSize(50);//增加50
 tp.AdjustSize(-30);//减少30

2):
class MyThreadJob : public ThreadJob //线程对象从ThreadJob扩展
{
public:
 virtual void DoJob(void *p)//自定义的虚函数
 {
  //....
 }
};
 MyThreadJob mt[10];
 ThreadPool tp;
 for(i=0; i<100 i++)
  tp.Call(mt + i);//tp.Call(mt + i, para);

*******************************************************************/
#ifndef _ThreadPool_H_
#define _ThreadPool_H_

#pragma warning(disable: 4530)
#pragma warning(disable: 4786)

#include <cassert>
#include <vector>
#include <queue>
#include <windows.h>

class ThreadJob  //工作基类
{
public:
 //供线程池调用的虚函数
 virtual void DoJob(void *pPara) = 0;
};

class ThreadPool
{

public:
 //dwNum 线程池规模
 ThreadPool(DWORD dwNum = 4) : _lThreadNum(0), _lRunningNum(0) 
 {
  InitializeCriticalSection(&_csThreadVector);
  InitializeCriticalSection(&_csWorkQueue);

_EventComplete = CreateEvent(0, false, false, NULL);
  _EventEnd = CreateEvent(0, true, false, NULL);
  _SemaphoreCall = CreateSemaphore(0, 0,  0x7FFFFFFF, NULL);
  _SemaphoreDel =  CreateSemaphore(0, 0,  0x7FFFFFFF, NULL);

assert(_SemaphoreCall != INVALID_HANDLE_VALUE);
  assert(_EventComplete != INVALID_HANDLE_VALUE);
  assert(_EventEnd != INVALID_HANDLE_VALUE);
  assert(_SemaphoreDel != INVALID_HANDLE_VALUE);

AdjustSize(dwNum <= 0 ? 4 : dwNum);
 }

~ThreadPool()
 {
  DeleteCriticalSection(&_csWorkQueue);

CloseHandle(_EventEnd);
  CloseHandle(_EventComplete);
  CloseHandle(_SemaphoreCall);
  CloseHandle(_SemaphoreDel);
  
  vector<ThreadItem*>::iterator iter;
  for(iter = _ThreadVector.begin(); iter != _ThreadVector.end(); iter++)
  {
   if(*iter)
    delete *iter;
  }

DeleteCriticalSection(&_csThreadVector);
 }
 //调整线程池规模
 int AdjustSize(int iNum)
 {
  if(iNum > 0)
  {
   ThreadItem *pNew;
   EnterCriticalSection(&_csThreadVector);
   for(int _i=0; _i<iNum; _i++)
   {
    _ThreadVector.push_back(pNew = new ThreadItem(this)); 
    assert(pNew);
    pNew->_Handle = CreateThread(NULL, 0, DefaultJobProc, pNew, 0, NULL);
    assert(pNew->_Handle);
   }
   LeaveCriticalSection(&_csThreadVector);
  }
  else
  {
   iNum *= -1;
   ReleaseSemaphore(_SemaphoreDel,  iNum > _lThreadNum ? _lThreadNum : iNum, NULL);
  }
  return (int)_lThreadNum;
 }
 //调用线程池
 void Call(void (*pFunc)(void  *), void *pPara = NULL)
 {
  assert(pFunc);

EnterCriticalSection(&_csWorkQueue);
  _JobQueue.push(new JobItem(pFunc, pPara));
  LeaveCriticalSection(&_csWorkQueue);

ReleaseSemaphore(_SemaphoreCall, 1, NULL);
 }
 //调用线程池
 inline void Call(ThreadJob * p, void *pPara = NULL)
 {
  Call(CallProc, new CallProcPara(p, pPara));
 }
 //结束线程池, 并同步等待
 bool EndAndWait(DWORD dwWaitTime = INFINITE)
 {
  SetEvent(_EventEnd);
  return WaitForSingleObject(_EventComplete, dwWaitTime) == WAIT_OBJECT_0;
 }
 //结束线程池
 inline void End()
 {
  SetEvent(_EventEnd);
 }
 inline DWORD Size()
 {
  return (DWORD)_lThreadNum;
 }
 inline DWORD GetRunningSize()
 {
  return (DWORD)_lRunningNum;
 }
 bool IsRunning()
 {
  return _lRunningNum > 0;
 }

protected:

//工作线程
 static DWORD WINAPI DefaultJobProc(LPVOID lpParameter = NULL)
 {
  ThreadItem *pThread = static_cast<ThreadItem*>(lpParameter);
  assert(pThread);

ThreadPool *pThreadPoolObj = pThread->_pThis;
  assert(pThreadPoolObj);

InterlockedIncrement(&pThreadPoolObj->_lThreadNum);

HANDLE hWaitHandle[3];
  hWaitHandle[0] = pThreadPoolObj->_SemaphoreCall;
  hWaitHandle[1] = pThreadPoolObj->_SemaphoreDel;
  hWaitHandle[2] = pThreadPoolObj->_EventEnd;

JobItem *pJob;
  bool fHasJob;
  
  for(;;)
  {
   DWORD wr = WaitForMultipleObjects(3, hWaitHandle, false, INFINITE);

//响应删除线程信号
   if(wr == WAIT_OBJECT_0 + 1)  
    break;
   
   //从队列里取得用户作业
   EnterCriticalSection(&pThreadPoolObj->_csWorkQueue);
   if(fHasJob = !pThreadPoolObj->_JobQueue.empty())
   {
    pJob = pThreadPoolObj->_JobQueue.front();
    pThreadPoolObj->_JobQueue.pop();
    assert(pJob);
   }
   LeaveCriticalSection(&pThreadPoolObj->_csWorkQueue);

//受到结束线程信号 确定是否结束线程(结束线程信号 && 是否还有工作)
   if(wr == WAIT_OBJECT_0 + 2 && !fHasJob)  
    break;

if(fHasJob && pJob)
   {
    InterlockedIncrement(&pThreadPoolObj->_lRunningNum);
    pThread->_dwLastBeginTime = GetTickCount();
    pThread->_dwCount++;
    pThread->_fIsRunning = true;
    pJob->_pFunc(pJob->_pPara); //运行用户作业
    delete pJob; 
    pThread->_fIsRunning = false;
    InterlockedDecrement(&pThreadPoolObj->_lRunningNum);
   }
  }

//删除自身结构
  EnterCriticalSection(&pThreadPoolObj->_csThreadVector);
  pThreadPoolObj->_ThreadVector.erase(find(pThreadPoolObj->_ThreadVector.begin(), pThreadPoolObj->_ThreadVector.end(), pThread));
  LeaveCriticalSection(&pThreadPoolObj->_csThreadVector);

delete pThread;

InterlockedDecrement(&pThreadPoolObj->_lThreadNum);

if(!pThreadPoolObj->_lThreadNum)  //所有线程结束
   SetEvent(pThreadPoolObj->_EventComplete);

return 0;
 }
 //调用用户对象虚函数
 static void CallProc(void *pPara) 
 {
  CallProcPara *cp = static_cast<CallProcPara *>(pPara);
  assert(cp);
  if(cp)
  {
   cp->_pObj->DoJob(cp->_pPara);
   delete cp;
  }
 }
 //用户对象结构
 struct CallProcPara  
 {
  ThreadJob* _pObj;//用户对象 
  void *_pPara;//用户参数
  CallProcPara(ThreadJob* p, void *pPara) : _pObj(p), _pPara(pPara) { };
 };
 //用户函数结构
 struct JobItem 
 {
  void (*_pFunc)(void  *);//函数
  void *_pPara; //参数
  JobItem(void (*pFunc)(void  *) = NULL, void *pPara = NULL) : _pFunc(pFunc), _pPara(pPara) { };
 };
 //线程池中的线程结构
 struct ThreadItem
 {
  HANDLE _Handle; //线程句柄
  ThreadPool *_pThis;  //线程池的指针
  DWORD _dwLastBeginTime; //最后一次运行开始时间
  DWORD _dwCount; //运行次数
  bool _fIsRunning;
  ThreadItem(ThreadPool *pthis) : _pThis(pthis), _Handle(NULL), _dwLastBeginTime(0), _dwCount(0), _fIsRunning(false) { };
  ~ThreadItem()
  {
   if(_Handle)
   {
    CloseHandle(_Handle);
    _Handle = NULL;
   }
  }
 };
 
 std::queue<JobItem *> _JobQueue;  //工作队列
 std::vector<ThreadItem *>  _ThreadVector; //线程数据

CRITICAL_SECTION _csThreadVector, _csWorkQueue; //工作队列临界, 线程数据临界

HANDLE _EventEnd, _EventComplete, _SemaphoreCall, _SemaphoreDel;//结束通知, 完成事件, 工作信号, 删除线程信号
 long _lThreadNum, _lRunningNum; //线程数, 运行的线程数

};

#endif //_ThreadPool_H_

win32线程池代码(WinApi/C++)的更多相关文章

  1. C++11的简单线程池代码阅读

    这是一个简单的C++11实现的线程池,代码很简单. 原理就是管理一个任务队列和一个工作线程队列. 工作线程不断的从任务队列取任务,然后执行.如果没有任务就等待新任务的到来.添加新任务的时候先添加到任务 ...

  2. JDK提供的四种线程池代码详解

    一.线程池什么时候使用,会给我们带来什么好处? 如果很多用户去访问服务器,用户访问服务器的时间是非常短暂的,那么有可能在创建线程和销毁线程上花费的时间会远远大于访问所消耗的时间,如果采用线程池会使线程 ...

  3. Java中java.util.concurrent包下的4中线程池代码示例

    先来看下ThreadPool的类结构 其中红色框住的是常用的接口和类(图片来自:https://blog.csdn.net/panweiwei1994/article/details/78617117 ...

  4. C#并行编程(2):.NET线程池

    线程 Thread 在总结线程池之前,先来看一下.NET线程. .NET线程与操作系统(Windows)线程有什么区别? .NET利用Windows的线程处理功能.在C#程序编写中,我们首先会新建一个 ...

  5. C#线程篇---线程池如何管理线程(6完结篇)

    C#线程基础在前几篇博文中都介绍了,现在最后来挖掘一下线程池的管理机制,也算为这个线程基础做个完结. 我们现在都知道了,线程池线程分为工作者线程和I/O线程,他们是怎么管理的? 对于Microsoft ...

  6. 简单理解设计模式——享元模式-线程池-任务(tesk)

    前面在写到多线程的文章的时候,一直想写一篇关于线程池等一系列的文章,做一下记录,本篇博客记录一下设计模式中享元模式的设计思想,以及使用享元模式的实现案例——线程池,以及线程池的简化版——任务(tesk ...

  7. jdk线程池主要原理

    本文转自:http://blog.csdn.net/linchengzhi/article/details/7567397 正常创建一个线程的时候,我们是这样的:new thread(Runnable ...

  8. python线程池(threadpool)模块使用笔记

    一.安装与简介 pip install threadpool pool = ThreadPool(poolsize) requests = makeRequests(some_callable, li ...

  9. java线程池初步理解

    多线程基础准备 进程:程序的执行过程,持有资源和线程 线程:是系统中最小的执行单元,同一个进程可以有多个线程,线程共享进程资源 线程交互(同步synchronized):包括互斥和协作,互斥通过对象锁 ...

随机推荐

  1. (转)Repeater在无数据记录时显示暂无数据

    方法就是在FooterTemplate加个Label并根据repeater.Items.Count判断是否有记录.关键代码如下: <FooterTemplate>     <asp: ...

  2. Ubuntu11.10打开XDMCP,使用XManager远程管理

    ubuntu11.10-desktop-i386.iso缺省安装使用lightdm作为缺省登录器,这里说说开启XDMCP进行远程登录 首先关闭防火墙 sudo ufw disables Ubuntu所 ...

  3. 获取subview

    通常我们在view层级里面对subView的操作可以通过两种方式:1.保留一个subview的引用,然后在类中通过该引用对该subview进行操作,但是要注意在适当的位置添加内存维护的代码,退出前手动 ...

  4. 【转】深入理解Java内存模型(二)——重排序

    数据依赖性 如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存在数据依赖性.数据依赖分下列三种类型: 名称 代码示例 说明 写后读 a = 1;b = a; 写一个变量之 ...

  5. nginx重定向规则详细介绍

    为何要使用301重定向 在网站建设中需要网页重定向的情况很多:如网页目录结构变动,网页重命名.网页的扩展名改变.网站域名改变等.如果不做重定向,用户的收藏和搜索引擎数据库中的旧地址只能让访客得到一个4 ...

  6. Css3案例

    <!DOCTYPE html> <html> <meta charset=utf-> <head> <style> body{ backgo ...

  7. arclist标签和list标签区别

    很多站长朋友在刚入门织梦的时候对织梦的标签存在很多的困惑,关于arclist标签和list标签,甚至不知道啥时候用arclist,啥时用list标签.arclist 为自由列表,全局模板中都生效,一般 ...

  8. C语言+ODBC+SQL 操作(向SQL里面添加数据)

    为了节省时间,我就引用上一节的数据库的表和C语言的结构体数组,在结构体数组中添加数据,清空数据库数据. 第一步查询:SQLBindParameter函数的用法. SQLRETURN SQLBindPa ...

  9. Swift—Core Foundation框架-备

    Core Foundation框架是苹果公司提供一套概念来源于Foundation框架,编程接口面向C语言风格的API.虽然在Swift中调用这种C语言风格的API比较麻烦,但是在OS X和iOS开发 ...

  10. C#的Reflection总结

    什么是反射 在.NET中的反射也可以实现从对象的外部来了解对象(或程序集)内部结构的功能,哪怕你不知道这个对象(或程序集)是个什么东西,另外.NET中的反射还可以运态创建出对象并执行它其中的方法. 反 ...