最优的做法最后路面的高度一定是原来某一路面的高度.

dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 i 个路面单调不递减, 第 x 个路面修整为原来的第 t 高的高度. 时间复杂度O( n³ ).

令g(x, t) = min{ dp(x, k) } (1 <= k <= t), 则转移O(1), g() 只需在dp过程中O(1)递推即可, 总时间复杂度为O( n² )

然后单调不递增也跑一遍, 取最优

-----------------------------------------------------------------------------

#include<bits/stdc++.h>
 
#define rep(i, n) for(int i = 0; i < n; ++i)
#define clr(x, c) memset(x, c, sizeof(x))
#define foreach(i, x) for(__typeof(x.begin()) i = x.begin(); i != x.end(); i++)
 
using namespace std;
 
const int maxn = 2009;
const int inf = 0x7fffffff;
 
int H[maxn], h[maxn], dp[maxn][maxn], g[maxn][maxn], n;
 
int main() {
freopen("test.in", "r", stdin);
cin >> n;
rep(i, n) {
scanf("%d", H + i);
h[i] = H[i];
}
sort(h, h + n);
rep(i, n) {
   dp[0][i] = abs(H[0] - h[i]);
   g[0][i] = i ? min(g[0][i - 1], dp[0][i]) : dp[0][i];
}
for(int i = 1; i < n; i++) 
   for(int j = 0; j < n; j++) {
    dp[i][j] = g[i - 1][j] + abs(H[i] - h[j]);
    g[i][j] = j ? min(g[i][j - 1], dp[i][j]) : dp[i][j];
   }
int ans = g[n - 1][n - 1];
for(int i = n - 1; ~i; i--) 
   g[0][i] = i != n - 1 ? min(g[0][i + 1], dp[0][i]) : dp[0][i];
for(int i = 1; i < n; i++)
   for(int j = n - 1; ~j; j--) {
    dp[i][j] = g[i - 1][j] + abs(H[i] - h[j]);
    g[i][j] = j != n - 1 ? min(g[i][j + 1], dp[i][j]) : dp[i][j];
   }
cout << min(ans, g[n - 1][0]) << "\n";
return 0;
}

-----------------------------------------------------------------------------

1592: [Usaco2008 Feb]Making the Grade 路面修整

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 453  Solved: 333
[Submit][Status][Discuss]

Description

FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| 请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。

Input

* 第1行: 输入1个整数:N * 第2..N+1行: 第i+1行为1个整数:A_i

Output

* 第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费

Sample Input

7
1
3
2
4
5
3
9

Sample Output

3

HINT

FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列 1,2,2,4,5,5,9。

Source

BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )的更多相关文章

  1. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  2. bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】

    因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差 以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对 ...

  3. 1592: [Usaco2008 Feb]Making the Grade 路面修整

    1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 428  Solv ...

  4. 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态

    我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...

  5. 【BZOJ】1592: [Usaco2008 Feb]Making the Grade 路面修整

    [算法]动态规划DP [题解] 题目要求不严格递增或不严格递减. 首先修改后的数字一定是原来出现过的数字,这样就可以离散化. f[i][j]表示前i个,第i个修改为第j个数字的最小代价,a表示排序后数 ...

  6. 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整

    贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...

  7. 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  8. 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...

  9. BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...

随机推荐

  1. Oracle 如何写出高效的 SQL

    转自:Oracle 如何写出高效的 SQL 要想写出高效的SQL 语句需要掌握一些基本原则,如果你违反了这些原则,一般情况下SQL 的性能将会很差. 1. 减少数据库访问次数连接数据库是非常耗时的,虽 ...

  2. PHP自练项目中个人中心创建,修改,验证(服务器端和客户端验证)

    当注册成功到登录后进入个人中心,查看和修改自己的资料 第一步:创建个人中心: <?php //定义个常量,用来授权调用includes里面的文件 define('IN_TG',true); // ...

  3. 如何查看.Net源代码vs版本号以及C#项目中各文件的含义

    查看.Net源代码vs版本号以及C#项目中各文件的含义 用记事本打开vs项目的.sln文件. 第2行就是这个源代码包的开发软件vs版本号了 注意了,如果是vs2003的sln文件通常没有这行,可以判断 ...

  4. 复制virtualenv环境到其他服务器环境配置的方法

    要在n多服务器端部署python的应用,虽然python本身是跨平台的,当时好多第三方的扩展却不一定都能做到各个版本兼容,即便是都是linux,在redhat系列和ubuntu系列之间来回导也是个很让 ...

  5. mybatis用logback日志不显示sql的解决办法

    mybatis用logback日志不显示sql的解决方法 1.mybatis-config.xml的设定 关于logimpl的设定值还不支持logback,如果用SLF4J是不好用的. 这是官方文档的 ...

  6. python urllib和urllib2 区别

    python有一个基础的库叫httplib.httplib实现了HTTP和HTTPS的客户端协议,一般不直接使用,在python更高层的封装模块中(urllib,urllib2)使用了它的http实现 ...

  7. 基于visual Studio2013解决C语言竞赛题之0203格式化输出

     题目 解决代码及点评 #include <stdio.h> #include <stdlib.h> void main() { // print是输出函数,参数%s表示输 ...

  8. 文件队列 QueueFile

    /** * Copyright (C) 2010 Square, Inc. * * Licensed under the Apache License, Version 2.0 (the " ...

  9. 杭电 HDU 1242 Rescue

    http://acm.hdu.edu.cn/showproblem.php?pid=1242 问题:牢房里有墙(#),警卫(x)和道路( . ),天使被关在牢房里位置为a,你的位置在r处,杀死一个警卫 ...

  10. Python之路Day5

    一.时间复杂度 (1)时间频度: 一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费的时间就多.一个算法中的语句执行次数称为语句频度或时间频度,记为T(n). (2)时 ...