True Liars
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2713   Accepted: 868

Description

After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was finally cast ashore on a foggy island. Though he was exhausted and despaired, he was still fortunate to remember a legend of the foggy island, which he had heard from patriarchs in his childhood. This must be the island in the legend. In the legend, two tribes have inhabited the island, one is divine and the other is devilish, once members of the divine tribe bless you, your future is bright and promising, and your soul will eventually go to Heaven, in contrast, once members of the devilish tribe curse you, your future is bleak and hopeless, and your soul will eventually fall down to Hell.

In order to prevent the worst-case scenario, Akira should distinguish the devilish from the divine. But how? They looked exactly alike and he could not distinguish one from the other solely by their appearances. He still had his last hope, however. The members of the divine tribe are truth-tellers, that is, they always tell the truth and those of the devilish tribe are liars, that is, they always tell a lie.

He asked some of them whether or not some are divine. They knew one another very much and always responded to him "faithfully" according to their individual natures (i.e., they always tell the truth or always a lie). He did not dare to ask any other forms of questions, since the legend says that a devilish member would curse a person forever when he did not like the question. He had another piece of useful informationf the legend tells the populations of both tribes. These numbers in the legend are trustworthy since everyone living on this island is immortal and none have ever been born at least these millennia.

You are a good computer programmer and so requested to help Akira by writing a program that classifies the inhabitants according to their answers to his inquiries.

Input

The input consists of multiple data sets, each in the following format :

n p1 p2 
xl yl a1 
x2 y2 a2 
... 
xi yi ai 
... 
xn yn an

The first line has three non-negative integers n, p1, and p2. n is the number of questions Akira asked. pl and p2 are the populations of the divine and devilish tribes, respectively, in the legend. Each of the following n lines has two integers xi, yi and one word ai. xi and yi are the identification numbers of inhabitants, each of which is between 1 and p1 + p2, inclusive. ai is either yes, if the inhabitant xi said that the inhabitant yi was a member of the divine tribe, or no, otherwise. Note that xi and yi can be the same number since "are you a member of the divine tribe?" is a valid question. Note also that two lines may have the same x's and y's since Akira was very upset and might have asked the same question to the same one more than once.

You may assume that n is less than 1000 and that p1 and p2 are less than 300. A line with three zeros, i.e., 0 0 0, represents the end of the input. You can assume that each data set is consistent and no contradictory answers are included.

Output

For each data set, if it includes sufficient information to classify all the inhabitants, print the identification numbers of all the divine ones in ascending order, one in a line. In addition, following the output numbers, print end in a line. Otherwise, i.e., if a given data set does not include sufficient information to identify all the divine members, print no in a line.

Sample Input

2 1 1
1 2 no
2 1 no
3 2 1
1 1 yes
2 2 yes
3 3 yes
2 2 1
1 2 yes
2 3 no
5 4 3
1 2 yes
1 3 no
4 5 yes
5 6 yes
6 7 no
0 0 0

Sample Output

no
no
1
2
end
3
4
5
6
end
 
题意: 有n个人,p1个好人p2个坏人。那么如果一个人说另一个人是好人,那么如果这个人是好人,说明 对方确实是好人,如果这个是坏人,说明这句话是假的,对方也是坏人。
 
如果一个人说另一个人是坏人,那么如果这个人是好人,说明对方是坏人,如果这个是坏人,说明 对方是好人。
 
也就是如果条件是yes说明这两个是相同集合的,否则是两个不同的集合。这里就可以用带权并查集处理。然后就是现在有k个集合了,每个集合中有坏人和好人,怎么组合才能满足要求。这时候就可以用背包来处理。dp[i][j]表示第i个集合后是否有j个人。dp[k][p1] = 1表示存在且唯一,dp[k][p1] = 0 表示不存在,dp[k][p1]>1表示多个。
然后关键在于怎么输出所有满足的人。这时候就可以在背包的时候记录路径,记录当前满足的状态是上面哪一个状态推过来的。
 
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<time.h>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int MAXN = ;
int pa[MAXN],n,p1,p2,rel[MAXN],vis[MAXN];
vector<int>b[MAXN][];
int a[MAXN][],dp[MAXN][MAXN],pre[MAXN][MAXN];
void Init()
{
for(int i = ; i <= p1 + p2; i++){
pa[i] = i;
b[i][].clear();
b[i][].clear();
a[i][] = ;
a[i][] = ;
}
memset(rel,,sizeof(rel));
}
int find(int x)
{
if(x != pa[x]){
int fx = find(pa[x]);
rel[x] = (rel[x] + rel[pa[x]]) % ;
pa[x] = fx;
}
return pa[x];
}
int main()
{
while(~scanf("%d%d%d",&n,&p1,&p2)){
if(!n && !p1 && !p2)break;
Init();
int x,y,z;
char s[];
for(int i = ; i < n; i++){
scanf("%d %d %s",&x,&y,s);
if(s[] == 'y'){
z = ;
}
else {
z = ;
}
int fx = find(x);
int fy = find(y);
if(fx != fy){
pa[fx] = fy;
rel[fx] = ( - rel[x] + z + rel[y]) % ;
}
}
memset(vis,,sizeof(vis));
int cnt = ;
for(int i = ; i <= p1 + p2; i++){
if(!vis[i]){
int tp = find(i);
for(int j = i; j <= p1 + p2; j++){
int fp = find(j);
if(fp == tp){
vis[j] = ;
b[cnt][rel[j]].push_back(j);
a[cnt][rel[j]] ++;
}
}
//cout<<a[cnt][0]<<' '<<a[cnt][1]<<endl;
cnt ++;
}
}
memset(vis,,sizeof(vis));
memset(dp,,sizeof(dp));
dp[][] = ;
for(int i = ; i < cnt; i++){
for(int j = p1; j >= ; j--){
if(j - a[i][] >= && dp[i-][j - a[i][]]){
dp[i][j] += dp[i-][j-a[i][]];
pre[i][j] = j - a[i][];
}
if(j - a[i][] >= && dp[i-][j - a[i][]]){
dp[i][j] += dp[i-][j-a[i][]];
pre[i][j] = j - a[i][];
}
}
}
if(dp[cnt-][p1] != ){
printf("no\n");
}
else {
vector<int>ans;
int l = p1;
for(int i = cnt - ; i >= ; i--){
int tp = l - pre[i][l];
if(tp == a[i][]){
for(int j = ; j < b[i][].size(); j++){
ans.push_back(b[i][][j]);
}
}
else {
for(int j = ; j < b[i][].size(); j++){
ans.push_back(b[i][][j]);
}
}
l = pre[i][l];
}
sort(ans.begin(),ans.end());
for(int i = ; i < ans.size(); i++){
printf("%d\n",ans[i]);
}
printf("end\n");
}
}
return ;
}

poj1417 带权并查集 + 背包 + 记录路径的更多相关文章

  1. poj1417(带权并查集+背包DP+路径回溯)

    题目链接:http://poj.org/problem;jsessionid=8C1721AF1C7E94E125535692CDB6216C?id=1417 题意:有p1个天使,p2个恶魔,天使只说 ...

  2. poj1417 带权并查集+0/1背包

    题意:有一个岛上住着一些神和魔,并且已知神和魔的数量,现在已知神总是说真话,魔总是说假话,有 n 个询问,问某个神或魔(身份未知),问题是问某个是神还是魔,根据他们的回答,问是否能够确定哪些是神哪些是 ...

  3. 西安邀请赛-D(带权并查集+背包)

    题目链接:https://nanti.jisuanke.com/t/39271 题意:给定n个物品,m组限制,每个物品有个伤害值,现在让两个人取完所有物品,要使得两个人取得物品伤害值之和最接近,输出伤 ...

  4. 洛谷P1196 [NOI2002]银河英雄传说(带权并查集)

    题目描述 公元五八○一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山压顶 ...

  5. POJ 1703 Find them, Catch them(带权并查集)

    传送门 Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42463   Accep ...

  6. [NOIP摸你赛]Hzwer的陨石(带权并查集)

    题目描述: 经过不懈的努力,Hzwer召唤了很多陨石.已知Hzwer的地图上共有n个区域,且一开始的时候第i个陨石掉在了第i个区域.有电力喷射背包的ndsf很自豪,他认为搬陨石很容易,所以他将一些区域 ...

  7. 【BZOJ-4690】Never Wait For Weights 带权并查集

    4690: Never Wait for Weights Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 88  Solved: 41[Submit][ ...

  8. hdu 1829-A Bug's LIfe(简单带权并查集)

    题意:Bug有两种性别,异性之间才交往, 让你根据数据判断是否存在同性恋,输入有 t 组数据,每组数据给出bug数量n, 和关系数m, 以下m行给出相交往的一对Bug编号 a, b.只需要判断有没有, ...

  9. POJ 2912 Rochambeau(难,好题,枚举+带权并查集)

    下面的是从该网站上copy过来的,稍微改了一点,给出链接:http://hi.baidu.com/nondes/item/26dd0f1a02b1e0ef5f53b1c7 题意:有N个人玩剪刀石头布, ...

随机推荐

  1. poj2486Apple Tree[树形背包!!!]

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9989   Accepted: 3324 Descri ...

  2. Android驱动入门-LED--测试APP编写③

    硬件平台: FriendlyARM Tiny4412 Cortex-A9 操作系统: UBUNTU 14.04 LTS 时间:2016-09-24  10:47:03 在Android Studio中 ...

  3. NOIP模拟赛 最大匹配

    问题描述 mhy12345学习了二分图匹配,二分图是一种特殊的图,其中的点可以分到两个集合中,使得相同的集合中的点两两没有连边.     图的“匹配”是指这个图的一个边集,里面的边两两不存在公共端点. ...

  4. 转载和积累系列 - 深入理解HTTP协议

    深入理解HTTP协议 1. 基础概念篇 1.1 介绍 HTTP是Hyper Text Transfer Protocol(超文本传输协议)的缩写.它的发展是万维网协会(World Wide Web C ...

  5. 如何调试shell脚本

    今天看shell脚本攻略的时候,看见这个方法,感觉还是不错的 #!/bin/bash function DEBUG(){ [[ $_DEBUG == 'on' ]] && $@ || ...

  6. BZOJ 3110 【Zjoi2013】 K大数查询

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置 ...

  7. HTTP下密码的安全传输、OAuth认证

    在复杂的web环境下,我们没有百分的把握保证信息在传输的过程中不被接货,那不是用明文如何告诉服务器自己的身份呢? 在一些高度通信安全的网络中,数据传输会使用HTTPS作为传输协议,但是通常情况下我们没 ...

  8. zabbix_proxy安装[yum mysql5.6]

      安装mysql rpm -ivh http://dev.mysql.com/get/mysql-community-release-el6-5.noarch.rpm   修改mysql配置: [m ...

  9. 如何获取Flickr图片链接地址作为外链图片

    Flickr,雅虎旗下图片分享网站.为一家提供免费及付费数位照片储存.分享方案之线上服务,也提供网络社群服务的平台.其重要特点就是基于社会网络的人际关系的拓展与内容的组织.这个网站的功能之强大,已超出 ...

  10. Apache POI 实现对 Excel 文件读写

    1. Apache POI 简介 Apache POI是Apache软件基金会的开放源码函式库. 提供API给Java应用程序对Microsoft Office格式档案读和写的功能. 老外起名字总是很 ...