来自:http://deeplearning.net/software/theano/tutorial/gradients.html

Derivatives in Theano

一、计算梯度

现在,让我们使用theano来做稍微更复杂的任务:创建一个函数,用来计算表达式y 关于它的参数x的导数。我们将会用到宏 T.grad 。例如,我们可以计算  关于 的梯度。注意: .

下面就是用来计算这个梯度的代码:

>>> from theano import pp
>>> x = T.dscalar('x')
>>> y = x ** 2
>>> gy = T.grad(y, x)
>>> pp(gy) # print out the gradient prior to optimization
'((fill((x ** 2), 1.0) * 2) * (x ** (2 - 1)))'
>>> f = function([x], gy)
>>> f(4)
array(8.0)
>>> f(94.2)
array(188.40000000000001)

在这个例子中,我们可以从pp(gy) 中看到我们在计算的符号梯度是正确的。 fill((x ** 2), 1.0) 意思是说创建一个和 x ** 2一样shape的矩阵,然后用1.0来填充。

note:该优化器简化了符号梯度的表达式,你可以深挖编译后的函数的内部属性来了解细节。

pp(f.maker.fgraph.outputs[0])
'(2.0 * x)'

在优化之后,在graph中只有一个 Apply节点,其输入是乘以2的。

我们同样可以计算复杂表达式的梯度,例如由上面定义的逻辑函数。结果显示逻辑函数的梯度为: .

该图是逻辑函数的梯度,x轴表示x的变化,y轴表示梯度  。

>>> x = T.dmatrix('x')
>>> s = T.sum(1 / (1 + T.exp(-x)))
>>> gs = T.grad(s, x)
>>> dlogistic = function([x], gs)
>>> dlogistic([[0, 1], [-1, -2]])
array([[ 0.25 , 0.19661193],
[ 0.19661193, 0.10499359]])

通常来说,对于任何标量表达式, T.grad(s, w) 提供theano表达式来计算 。这种方式下,甚至对于有着许多输入的函数来说,theano可以用来高效的计算符号微分 (正如 T.grad 返回的表达式可以在编译期间进行优化)
automatic
differentiation
 有详细的描述关于符号微分的)。

note: T.grad 的第二个参数可以是一个列表,这种情况下,输出也同样是一个列表。在这两个列表中的顺序都是很重要的:输出列表的第
i 个元素是T.grad 的第一个参数关于第二个参数的列表的第
i 个元素的梯度。 T.grad 第一个参数必须是一个标量(其tensor
size 为1)。更多有关T.grad的参数的语义的信息和实现的细节,可以参考库的 this 部分。

在内部微分的工作的信息可以在更高级的教程 Extending Theano中找到。

二、计算Jacobian

在theano中,术语 Jacobian 指定为张量包含函数的输出关于输入的第一个偏导数。 (在数学中这就是所谓的Jacobian矩阵) Theano 实现宏theano.gradient.jacobian() 所需要的就是计算Jacobian。下面部分就是解释如何手动去完成它:

为了手动计算一些函数 y 关于一些参数 x 的Jacobian,我们需要使用 scan。即在y
中使用循环来遍历所有元素,然后计算
 y[i] 关于x 的梯度。

note:scan 是theano中一个通用的操作,可以以符号方式写出各种递归等式。然而生成一个符号循环是很难的(而且还需要为了性能而去优化它们)
,所以需要努力提升scan.的效果。在后面会接着说 scan 的。

>>> x = T.dvector('x')
>>> y = x ** 2
>>> J, updates = theano.scan(lambda i, y,x : T.grad(y[i], x), sequences=T.arange(y.shape[0]), non_sequences=[y,x])
>>> f = function([x], J, updates=updates)
>>> f([4, 4])
array([[ 8., 0.],
[ 0., 8.]])

在该代码中所做的就是生成一个int类型的序列,通过使用T.arange来使得其中从0到 y.shape[0] 。然后我们对这个序列进行循环,然后在每一步,灭我们计算元素 y[i]关于x
的梯度。scan 可以自动的连接所有的这些列,生成一个对应于jacobian的矩阵。

note:在使用T.grad的时候记得也有一些陷阱的。 其中一个就是你没法和这样theano.scan(lambda y_i,x: T.grad(y_i,x), sequences=y, non_sequences=x)重写jacobin的上述表达式,,尽管从文档上看scan是可以的。原因在于 y_i 不再试x的函数了,而 y[i]仍然是。

三、计算Hessian

在theano中,术语Hessian 与数学上的概念没差:是一个矩阵,其中包含着标量输出和向量输入的函数的二阶偏导数。Theano 实现宏theano.gradient.hessian() 所要做的就是计算Hessian。下面的部分就是介绍如何手动完成。

你可以可jacobian一样相似的计算Hessian。唯一的差别在于,我们通过计算T.grad(cost,x)的jacobian来代替计算一些表达式y
的jacobian,所以计算的cost是标量的。

>>> x = T.dvector('x')
>>> y = x ** 2
>>> cost = y.sum()
>>> gy = T.grad(cost, x)
>>> H, updates = theano.scan(lambda i, gy,x : T.grad(gy[i], x), sequences=T.arange(gy.shape[0]), non_sequences=[gy, x])
>>> f = function([x], H, updates=updates)
>>> f([4, 4])
array([[ 2., 0.],
[ 0., 2.]])

四、Jacobian乘以一个向量

有时候我们需要将算法表示成jacobinas乘以向量,或者向量乘以jacobinans。相比较于评估jacobian,然后做乘法,可以直接计算合适的结果从而避免对jacobian的实际计算。这可以带来明显的性能的提升。一个这样的算法可以在下面的文献中找到:

  • Barak A. Pearlmutter, “Fast Exact Multiplication by the Hessian”, Neural Computation, 1994

然而在实际中,我们想要theano能够自动的识别这些模式,不过以通常的方式来实现这样的优化是非常难的。所以,我们提供了特别的函数来应对这些问题:

R-operator

R
操作符是用来评估介于一个jacobian和一个向量之间的乘积的,即 .
该式子可以扩展成当x是一个矩阵,或者一个张量的形式,这种情况下,jacobian就变成了一个张量,然后乘积就变成了某种张量的积。因为在实际中,我们最后是需要计算权重矩阵这样的表达式的,theano支持这种操作的更通用形式。为了评估表达式y的R
操作,(关于x的),使用v乘以jacobian,你需要做类似下面的事情:

>>> W = T.dmatrix('W')
>>> V = T.dmatrix('V')
>>> x = T.dvector('x')
>>> y = T.dot(x, W)
>>> JV = T.Rop(y, W, V)
>>> f = theano.function([W, V, x], JV)
>>> f([[1, 1], [1, 1]], [[2, 2], [2, 2]], [0,1])
array([ 2., 2.])

实现Rop的操作列表List 。

L-operator

相似于R-操作L-操作 会计算一个行向量乘积,其数学上的形式为 。该L-操纵 同样支持通用的张量
(不只是向量)。相思的,它可以按照下面形式实现:

>>> W = T.dmatrix('W')
>>> v = T.dvector('v')
>>> x = T.dvector('x')
>>> y = T.dot(x, W)
>>> VJ = T.Lop(y, W, v)
>>> f = theano.function([v,x], VJ)
>>> f([2, 2], [0, 1])
array([[ 0., 0.],
[ 2., 2.]])

note:v,
在L操作和R操作中是不同的。对于L操作来说,该 v 需要有着和输出一样的shape,然而,R操作需要和输入参数一样的shape。更进一步说,这两个操作的结果是不同的。L操作的结果有着和输入参数一样的shape,而R操作有着和输出一样的shape。

五、Hessian乘以一个向量

如果你需要计算Hessian
乘以一个向量,你就需要用到上面定义的操作,它们通常比实际计算准确的Hessian,然后计算乘积更高效。因为Hessian矩阵的对称性,你可以用两种方式得到相同的结果,虽然这些选择也许会有不同的性能。因此,我们建议在使用它们之前先,
先对它们进行分析:

>>> x = T.dvector('x')
>>> v = T.dvector('v')
>>> y = T.sum(x ** 2)
>>> gy = T.grad(y, x)
>>> vH = T.grad(T.sum(gy * v), x)
>>> f = theano.function([x, v], vH)
>>> f([4, 4], [2, 2])
array([ 4., 4.])

或者使用R操作:

>>> x = T.dvector('x')
>>> v = T.dvector('v')
>>> y = T.sum(x ** 2)
>>> gy = T.grad(y, x)
>>> Hv = T.Rop(gy, x, v)
>>> f = theano.function([x, v], Hv)
>>> f([4, 4], [2, 2])
array([ 4., 4.])

备注:

  • grad 函数是符号化的工作的:它接受和返回theano变量。
  • grad 可以和宏相比较,因为它可以重复使用
  • 标量损失只能被直接通过grad进行处理。数组可以通过重复应用的形式来解决
  • 内建的函数可以高效的计算向量乘以jacobian和向量乘以Hessian
  • 优化需要高效的计算全jacobian和Hessian矩阵,以及jacobian乘以向量。

参考资料:

[1]官网:http://deeplearning.net/software/theano/tutorial/gradients.html

Theano2.1.6-基础知识之在thenao中的求导的更多相关文章

  1. Linux基础知识第九讲,linux中的解压缩,以及软件安装命令

    目录 Linux基础知识第九讲,linux中的解压缩,以及软件安装命令 一丶Linux Mac Windows下的压缩格式简介 2.压缩以及解压缩 3.linux中的软件安装以及卸载 1.apt进行安 ...

  2. js基础知识温习:Javascript中如何模拟私有方法

    本文涉及的主题虽然很基础,在很多人眼里属于小伎俩,但在JavaScript基础知识中属于一个综合性的话题.这里会涉及到对象属性的封装.原型.构造函数.闭包以及立即执行表达式等知识. 公有方法 公有方法 ...

  3. 深入理解python(一)python语法总结:基础知识和对python中对象的理解

    用python也用了两年了,趁这次疫情想好好整理下. 大概想法是先对python一些知识点进行总结,之后就是根据python内核源码来对python的实现方式进行学习,不会阅读整个源码,,,但是应该会 ...

  4. vue2.0基础知识,及webpack中vue的使用

    ## 基础指令 ## [v-cloak]{         Display:none;     }     <p v-cloak>xx{{msg}}xx</p> //解决闪烁问 ...

  5. Nginx基础知识之————RTMP模块中的中HLS专题(翻译文档)

    一.在Nginx配置文件的RTMP模块中配置hls hls_key_path /tmp/hlskeys; 提示错误信息: nginx: [emerg] the same path name " ...

  6. js基础知识温习:js中的对象

    在JavaScript中对象是一个无序属性的集合,其属性可以包含基本值.对象或者函数. 对象最简单的创建方式 JavaScript中创建对象最简单的方式就是创建一个Object对象的实例,然后再添加属 ...

  7. Python 基础知识(持续更新中)

    内置数据类型:     整型     浮点型     字符串     布尔值     空值 None     列表 list     元组 tuple     字典 dict     集合 set   ...

  8. es2015(es6)基础知识整理(更新中...)

    1.let let可以声明块级作用域变量 'use strict'; if (true) { let app = 'apple'; } console.log(app); //外面是访问不到app的 ...

  9. Android基础知识之Manifest文件中的用户权限元素

    原文:http://android.eoe.cn/topic/android_sdk 分任务原文链接一:http://developer.android.com/guide/topics/manife ...

随机推荐

  1. IO流05--毕向东JAVA基础教程视频学习笔记

    Day20 10 创建java文件列表11 Properties简述12 Properties存取13 Properties存取配置文件14 Properties练习15 PrintWriter16 ...

  2. VS 2013中的新特性browser link

    Browser Link是连接VS和浏览器之间的通道.有了这个特性,web程序就能够和VS交互传递数据.这个特性在VS2013中是默认开启的.当开启了Browser Link, web程序运行的时候, ...

  3. C# 重载运算符

    如果你想让自己定义的类型可以用运算符进行运算,那么可以通过重载运算符来实现: 示例: class Salary { public int RMB { get; set; } public static ...

  4. ORACLE 10g AWR报告设置总结

      1:查看.修改AWR报告快照数据的采样间隔.保存策略 SQL> COL DBID FOR 999999999999 SQL> COL SNAP_INTERVAL FOR A26 SQL ...

  5. SQL Server 2014新特性——事务持久性控制

    控制事务持久性 SQL Server 2014之后事务分为2种:完全持久, 默认或延迟的持久. 完全持久,当事务被提交之后,会把事务日志写入到磁盘,完成后返回给客户端. 延迟持久,事务提交是异步的,在 ...

  6. Java Override/Overload

    重写(Override) 重写是子类对父类的允许访问的方法的实现过程进行重新编写!返回值和形参都不能改变.即外壳不变,核心重写! 重写的好处在于子类可以根据需要,定义特定于自己的行为. 也就是说子类能 ...

  7. 烂泥:rsync与inotify集成实现数据实时同步更新

    本文由秀依林枫提供友情赞助,首发于烂泥行天下. 上篇文章我们介绍了如何使用rsync同步文件,这篇文章我们再来介绍下,如何把rsync与inotify集成实现数据的实时同步. 要达到这个目的,我们需要 ...

  8. 烂泥:rsync配置文件详解

    本文由秀依林枫提供友情赞助,首发于烂泥行天下. 对于rsync服务器来说,最重要和复杂的就是它的配置了.rsync服务器的配置文件为/etc/rsyncd.conf,其控制认证.访问.日志记录等等. ...

  9. iOS基于MBProgressHUD的二次封装,一行搞定,使用超简单

    MBProgressHUD的使用,临时总结了几款最常用的使用场景: 1.提示消息 用法: [YJProgressHUD showMessage:@"显示文字,1s隐藏" inVie ...

  10. Python标准库01 正则表达式(re包)

    python正则表达式基础 简单介绍 正则表达式并不是python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大 ...