51NOD 1962 区间计数 单调栈+二分 / 线段树+扫描线
两个数列 {An} , {Bn}
,请求出Ans, Ans定义如下:
Ans:=Σni=1Σnj=i[max{Ai,Ai+1,...,Aj}=max{Bi,Bi+1,...,Bj}]
注:[ ]内表达式为真,则为1,否则为0.
第一行一个整数N
第二行N个整数Ai
第三行N个整数Bi
一行,一个整数Ans
5
1 4 2 3 4
3 2 2 4 1
#include <bits/stdc++.h>
inline long long read(){long long x=,f=;char ch=getchar();while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}return x*f;}
using namespace std;
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 4e5 + , M = 1e3, inf = 2e9; int n,a[N],b[N];
int l[],r[],q[][N],pos[][N];
LL cal(int x,int p,int i) {
int ll = l[p], rr = r[p],ok = ll;
while(ll <= rr) {
if(q[p][mid] > x) {
ll = mid + ;
} else ok = mid,rr = mid - ;
}
// cout<<i<<" "<<p<<" "<<ok<<" "<<q[p][ok]<<" "<<x<<endl;
int mmp1,mmp2;
mmp1 = max(pos[p][ok-]+,pos[p^][r[p^]-]+);
mmp2 = i-; if(q[p][ok] == x)
return 1LL * max(min(pos[p^][r[p^]],pos[p][ok]) - mmp1+,)
* max(mmp2 - max(pos[p^][r[p^]],pos[p][ok]) + ,);
else return ;
}
int main() {
cin >> n;
for(int i = ; i <= n; ++i) scanf("%d",&a[i]);
for(int i = ; i <= n; ++i) scanf("%d",&b[i]);
l[] = l[] = ;
r[] = r[] = ;
pos[][] = pos[][] = ;
LL ans = ;
for(int i = ; i <= n; ++i) {
LL ret = ;
while(l[] <= r[] && a[i] >= q[][r[]]) {
ret += cal(q[][r[]],,i);
r[]--;
}
q[][++r[]] = a[i];pos[][r[]] = i;
while(l[] <= r[] && b[i] >= q[][r[]]) {
ret += cal(q[][r[]],,i);
r[]--;
}
q[][++r[]] = b[i];pos[][r[]] = i;
//cout<<"fuck "<<i<<" " << ret<<endl;
ans += ret;
}
while(l[] <= r[]) {
ans += cal(q[][r[]],,n+);
r[]--;
}
cout<<ans<<endl;
return ;
}
51NOD 1962 区间计数 单调栈+二分 / 线段树+扫描线的更多相关文章
- 51nod 1962区间计数(单调栈加二分)
题目要求是求出两个序列中处于相同位置区间并且最大值相同的区间个数,我们最直观的感受就是求出每个区间的最大值,这个可以O(N)的求,利用单调栈求出每个数作为最大值能够覆盖的区间. 然后我们可以在进行单调 ...
- 51nod 1206 Picture 矩形周长求并 | 线段树 扫描线
51nod 1206 Picture 矩形周长求并 | 线段树 扫描线 #include <cstdio> #include <cmath> #include <cstr ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
- 【10.7校内测试】【队列滑窗】【2-sat】【贪心+栈二分+线段树(noip模拟好题)】【生日祭!】
比较好想的一道题,直接用队列滑窗,因为扫一遍往队列里加东西时,改变的只有一个值,开桶储存好就行了! #include<bits/stdc++.h> using namespace std; ...
- 51Nod—1174 区间中最大的数 线段树模版
在大佬们题解的帮助下算是看懂了线段树吧...在这mark下防一手转头就忘. #include<iostream> #include<stdio.h> using namespa ...
- 51nod 1962 区间计数(单调栈+二分)
维护两个单调递减的栈,当i加进栈,位置x的数弹出的时候,在另一个栈中找到和这个数一样大的数,计算贡献(x-靠右左端点)*(i-x). #include<iostream> #include ...
- BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 8748 Solved: 3835[Submi ...
- BZOJ1012最大数 [JSOI2008] 单调栈+二分
正解:单调栈+二分查找(or,线段树? 解题报告: 拿的洛谷的链接quq 今天尝试学习了下单调栈,然后就看到有个博客安利了这个经典例题?于是就去做了,感觉还是帮助了理解趴quqqqqq 这题,首先,一 ...
- 【bzoj4237】稻草人 分治+单调栈+二分
题目描述 JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田地.和启示中的一样,田地需要满足以下条件: ...
随机推荐
- Oracle 的安装与使用
一.文件下载 安装的是Oracle 11G,安装文件名为OracleXE112_Win32.zip, 官方文件下载地址:http://www.oracle.com/technetwork/databa ...
- 转 C++ 面向对象程序设计的基本特点
传送门 Miss it C++ 面向对象程序设计的基本特点 First: 抽象 面向对象方法中的抽象,是指对具体问题(对象)进行概括,抽出一类对象公共性质并加以描述的过程. 抽象的过程,也是对问题 ...
- XML布局文件于Java代码使用问题
2013-9-21 问题一.不同的XML文件中相同类型的控件id相同,那么将这些不同的布局xml组合在一个大的布局中,如何解决相同id问题 ? 解决办法: 不同的布局文件XML要组合成一个新的大布局, ...
- Linux 之 rsync实现服务器的文件同步
rsync实现服务器的文件同步 参考文献链接: 一.rsync实现负载均衡集群文件同步,搭建线上测试部署环境 二.rsync. 三.rsync常见错误. 四.rsync 安装使用详解. 环境部署: 服 ...
- LeetCode OJ--Subsets II
https://oj.leetcode.com/problems/subsets-ii/ 求一个集合的子集,但集合中有重复元素. 求子集的问题,对应着数的二进制,相当于对二进制的一个遍历. #incl ...
- AC日记——Milking Grid poj 2185
Milking Grid Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 8314 Accepted: 3586 Desc ...
- BZOJ2243 [SDOI2011]染色(树链剖分+线段树合并)
题目链接 BZOJ2243 树链剖分 $+$ 线段树 线段树每个节点维护$lc$, $rc$, $s$ $lc$代表该区间的最左端的颜色,$rc$代表该区间的最右端的颜色 $s$代表该区间的所有连续颜 ...
- netframework中等待多个子线程执行完毕并计算执行时间
本文主要描述在.netframework中(实验环境.netframework版本为4.6.1)提供两种方式等待多个子线程执行完毕. ManualResetEvent 在多线程中,将ManualRes ...
- spring mvc利用MultipartResolver解析Multipart/form-data进行文件上传
之前的表单数据都是文本数据,现记录:利用MultipartResolver进行文件上传. ①首先,需引入commons-fileUpload和commons-io jar包,pom.xml文件的坐标: ...
- QBXT T15214 Day2上午遭遇
题目描述 你是能看到第一题的 friends呢. -- hja ?座楼房,立于城中 . 第?座楼,高度 ℎ?. 你需要一开始选择座楼,跳. 在第 ?座楼准备跳需要 ??的花费. 每次可以跳到任何一个还 ...