Common Subsequence

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming contest
abcd mnp

Sample Output

4
2
0 题解出处:http://blog.csdn.net/a_eagle/article/details/7213236

题目大意:给出两个字符串,求两个字符串的最长公共字串。

思路:慢慢重心开始有贪心转向动态规划了,这题就是简单的动态规划题。以题目的第一组测试数据为例。abcfbc abfcab。

辅助空间变化示意图

可以看出:

F[i][j]=F[i-1][j-1]+1;(a[i]==b[j])

F[i][j]=max(F[i-1][j],F[i][j-1])(a[i]!=b[j]);

n由于F(i,j)只和F(i-1,j-1), F(i-1,j)和F(i,j-1)有关, 而在计算F(i,j)时, 只要选择一个合适的顺序, 就可以保证这三项都已经计算出来了, 这样就可以计算出F(i,j). 这样一直推到f(len(a),len(b))就得到所要求的解了.
 
ps:本题求不连续LCS,注释部分为连续LCS。
#include<stdio.h>
#include<string.h> int f[][];
char s1[],s2[]; int max(int x,int y)
{
return x>y?x:y;
} int main()
{
int n,i,j;
while(~scanf("%s %s",s1,s2)){
memset(f,,sizeof(f));
//int maxx=0;
for(i=;i<=strlen(s1);i++){
for(j=;j<=strlen(s2);j++){
if(s1[i-]==s2[j-]){
f[i][j]=f[i-][j-]+;
//if(f[i][j]>maxx) maxx=f[i][j];
}
//不加else
else f[i][j]=max(f[i-][j],f[i][j-]);
}
}
//printf("%d\n",maxx);
printf("%d\n",f[strlen(s1)][strlen(s2)]);
}
return ;
}

POJ - 1458 Common Subsequence DP最长公共子序列(LCS)的更多相关文章

  1. POJ 1458 Common Subsequence 【最长公共子序列】

    解题思路:先注意到序列和串的区别,序列不需要连续,而串是需要连续的,先由样例abcfbc         abfcab画一个表格分析,用dp[i][j]储存当比较到s1[i],s2[j]时最长公共子序 ...

  2. POJ 1458 Common Subsequence(最长公共子序列)

    题目链接Time Limit: 1000MS Memory Limit: 10000K Total Submissions: Accepted: Description A subsequence o ...

  3. POJ1458 Common Subsequence —— DP 最长公共子序列(LCS)

    题目链接:http://poj.org/problem?id=1458 Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  4. 题解报告:hdu 1159 Common Subsequence(最长公共子序列LCS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Problem Description 给定序列的子序列是给定的序列,其中有一些元素(可能没有) ...

  5. hdu 1159 Common Subsequence(最长公共子序列,DP)

    题意: 两个字符串,判断最长公共子序列的长度. 思路: 直接看代码,,注意边界处理 代码: char s1[505], s2[505]; int dp[505][505]; int main(){ w ...

  6. hdu 1159 Common Subsequence (最长公共子序列 +代码)

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

  7. hdu 1159 Common Subsequence(最长公共子序列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  8. POJ 1159 Palindrome(区间DP/最长公共子序列+滚动数组)

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 56150   Accepted: 19398 Desc ...

  9. HDU 1159 Common Subsequence 【最长公共子序列】模板题

    题目链接:https://vjudge.net/contest/124428#problem/A 题目大意:给出两个字符串,求其最长公共子序列的长度. 最长公共子序列算法详解:https://blog ...

随机推荐

  1. 使用struts2中默认的拦截器以及自定义拦截器

    转自:http://blog.sina.com.cn/s/blog_82f01d350101echs.html 如何使用struts2拦截器,或者自定义拦截器.特别注意,在使用拦截器的时候,在Acti ...

  2. nexus-2.11.4-01-bundle.tar.gz 下载地址

    wget http://sonatype-download.global.ssl.fastly.net/nexus/oss/nexus-2.11.4-01-bundle.tar.gz 注意原本的是ht ...

  3. pycharm注册码地址

    (1)地址:http://idea.lanyus.com/ (2)注意,在破解的时候,是先修改hosts文件所在路径:“C:\Windows\System32\drivers\etc\hosts”,修 ...

  4. git拉取远程分支到本地分支或者创建本地新分支

    git fetch origin branchname:branchname 可以把远程某各分支拉去到本地的branchname下,如果没有branchname,则会在本地新建branchname g ...

  5. 我的Android进阶之旅------>Ubuntu下不能识别Android设备的解决方法

    Bus 001 Device 006: ID 1b20:0c81 MStar Semiconductor, Inc.      今天不知道Ubuntu发了什么疯,昨天还用的好好的,今天就突然不能识别我 ...

  6. Machine Learning No.10: Anomaly detection

    1. Algorithm 2. evaluating an anomaly detection system 3. anomaly detection vs supervised learning 4 ...

  7. POJ3693 Maximum repetition substring —— 后缀数组 重复次数最多的连续重复子串

    题目链接:https://vjudge.net/problem/POJ-3693 Maximum repetition substring Time Limit: 1000MS   Memory Li ...

  8. matlab打开文件对话框

    [filename, pathname, filterindex] = uigetfile({'*.xyz', '点云文件 (*.xyz)';'*.*', 'All Files (*.*)'},'请选 ...

  9. Go丨语言对MySQL数据库的增、删、改、查操作

    1.建立数据库名为: go_test_db 2.建表名为:userinfo 字段: uid int username varchar language varchar created varchar ...

  10. JQuery添加删除标签

    <!DOCTYPE html><html><head> <meta charset="UTF-8"> <script src= ...